• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Growing and surviving: How proteins regulate the cell cycle

Bioengineer by Bioengineer
March 23, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cell division is the basis of all life. Even the smallest errors in this complex process can lead to grave diseases like cancer. Certain proteins have to be switched on or off at certain times for everything to go according to plan. Biophysicists and medical biochemists at Martin Luther University Halle-Wittenberg (MLU) have managed to describe the underlying mechanism of this process. They have figured out how different signaling pathways in the cell change the structure of proteins, thereby driving the cell division cycle in the right direction at the right time. The researchers present their findings in the renowned journal "Proceedings of the National Academy of Sciences".

The cell cycle is an extremely complex and precisely defined process. "The parent cell has to double its existing components and then divide into to daughter cells. In order to do this, numerous genes have to be switched on and off at very specific times," says biophysicist Professor Jochen Balbach from MLU. The cell cycle is sub-divided into various phases. These are controlled by what are known as inhibitors proteins, also called CDK inhibitors. Like a red traffic light, these proteins block transition to the next phase until the cell gives the relevant start signal. The signal to start the next phase of the cell cycle comes from a special enzyme group, the kinases. "Previously we only knew that the kinases passed on the signal by adding a phosphate group onto the CDK inhibitors. There was no knowledge, however, of which kinases do this and the underlying molecular mechanism for this," continues Balbach.

Together with the working group led by Professor Mechthild Hatzfeld from the Pathobiochemistry Section of the Medical Faculty of MLU, the researchers have now been able to describe this signaling pathway for the first time. They combined high-resolution magnetic resonance spectroscopy data with methods from cell biology. This meant that the researchers were able to explain the mechanism first in test tubes and then directly in cells. The researchers found that the kinases change the structure of the inhibitor proteins by unfolding them. This process disables the original function of the inhibitor proteins and releases a further blocked kinase that gives the signal for the cell cycle to continue. This local unfolding also triggers the degradation of the inhibitor in the cell, determining the direction in which the progression occurs. The researchers from Halle assume that this mechanism preserved by evolution is the basis of many cellular signal pathways.

###

Media Contact

Tom Leonhardt
[email protected]
0049-345-552-1438

http://www.uni-halle.de

http://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=2853

Related Journal Article

http://dx.doi.org/10.1073/pnas.1719774115

Share12Tweet7Share2ShareShareShare1

Related Posts

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

August 22, 2025
APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

August 22, 2025

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

August 22, 2025

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

Harnessing the Power of the Non-Coding Genome to Advance Precision Medicine

Moffitt Study Reveals Lymphoma Speeds Up Aging in Immune Cells and Tissues

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.