• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Growing and surviving: How proteins regulate the cell cycle

Bioengineer by Bioengineer
March 23, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cell division is the basis of all life. Even the smallest errors in this complex process can lead to grave diseases like cancer. Certain proteins have to be switched on or off at certain times for everything to go according to plan. Biophysicists and medical biochemists at Martin Luther University Halle-Wittenberg (MLU) have managed to describe the underlying mechanism of this process. They have figured out how different signaling pathways in the cell change the structure of proteins, thereby driving the cell division cycle in the right direction at the right time. The researchers present their findings in the renowned journal "Proceedings of the National Academy of Sciences".

The cell cycle is an extremely complex and precisely defined process. "The parent cell has to double its existing components and then divide into to daughter cells. In order to do this, numerous genes have to be switched on and off at very specific times," says biophysicist Professor Jochen Balbach from MLU. The cell cycle is sub-divided into various phases. These are controlled by what are known as inhibitors proteins, also called CDK inhibitors. Like a red traffic light, these proteins block transition to the next phase until the cell gives the relevant start signal. The signal to start the next phase of the cell cycle comes from a special enzyme group, the kinases. "Previously we only knew that the kinases passed on the signal by adding a phosphate group onto the CDK inhibitors. There was no knowledge, however, of which kinases do this and the underlying molecular mechanism for this," continues Balbach.

Together with the working group led by Professor Mechthild Hatzfeld from the Pathobiochemistry Section of the Medical Faculty of MLU, the researchers have now been able to describe this signaling pathway for the first time. They combined high-resolution magnetic resonance spectroscopy data with methods from cell biology. This meant that the researchers were able to explain the mechanism first in test tubes and then directly in cells. The researchers found that the kinases change the structure of the inhibitor proteins by unfolding them. This process disables the original function of the inhibitor proteins and releases a further blocked kinase that gives the signal for the cell cycle to continue. This local unfolding also triggers the degradation of the inhibitor in the cell, determining the direction in which the progression occurs. The researchers from Halle assume that this mechanism preserved by evolution is the basis of many cellular signal pathways.

###

Media Contact

Tom Leonhardt
[email protected]
0049-345-552-1438

http://www.uni-halle.de

http://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=2853

Related Journal Article

http://dx.doi.org/10.1073/pnas.1719774115

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Convergent Evolution in Wheat and Barley Breeding

November 17, 2025
Exploring Androgen’s Role in Human Genital Transcriptome

Exploring Androgen’s Role in Human Genital Transcriptome

November 17, 2025

Fertility Treatments in Mice Associated with Increased Mutation Rates Compared to Natural Conception

November 17, 2025

Discovering New QTLs for Wheat Quality and Yield

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    114 shares
    Share 46 Tweet 29
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Drug-Tolerant Persister Cells: From Lab to Clinic

Postpartum Care for Parents in NICU Settings

Gene Therapy Reveals Dystrophin Levels via Mass Spectrometry

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.