• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Group decisions: When more information isn’t necessarily better

Bioengineer by Bioengineer
April 22, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In nature, group decisions are often a matter of life or death. At first glance, the way certain groups of animals like minnows branch off into smaller sub-groups might seem counterproductive to their survival. After all, information about, say, where to find some tasty fish roe or which waters harbor more of their predators, would flow more freely and seem to benefit more minnows if the school of fish behaved as a whole. However, new research published in Philosophical Transactions of the Royal Society B sheds light on the complexity of collective decision-making and uncovers new insights into the benefits of the internal structure of animal groups.

In their paper, Albert Kao, a Baird Scholar and Omidyar Fellow at the Santa Fe Institute, and Iain Couzin, Director of the Max Planck Institute for Ornithology and Chair of Biodiversity and Collective Behavior at the University of Konstanz, simulate the information-sharing patterns of animals that prefer to interact with certain individuals over others. The authors’ modeling of such animal groups upends previously held assumptions about internal group structure and improves upon our understanding of the influence of group organization and environment on both the collective decision-making process and its accuracy.

Modular — or cliquey — group structure isolates the flow of communication between individuals, so that only certain animals are privy to certain pieces of information. “A feature of modular structure is that there’s always information loss,” says Kao, “but the effect of that information loss on accuracy depends on the environment.”

In simple environments, the impact of these modular groups is detrimental to accuracy, but when animals face many different sources of information, the effect is actually the opposite. “Surprisingly,” says Kao, “in complex environments, the information loss even helps accuracy in a lot of situations.” More information, in this case, is not necessarily better.

“Modular structure can have a profound — and unexpected — impact on the collective intelligence of groups,” says Couzin. “This may indeed be one of the reasons that we see internal structure in so many group-living species, from schooling fish and flocking birds to wild primate groups.”

Potentially, these new observations could be applied to many different kinds of social networks, from the migration patterns of birds to the navigation of social media landscapes to the organization of new companies, deepening our grasp of complex organization and collective behavior.

The paper, “Modular structure within groups causes information loss but can improve decision accuracy,” is part of a theme issue in the Philosophical Transactions of the Royal Society B entitled “Liquid Brians, Solid Brians: How distributed cognitive architectures process information.” The issue was inspired by a Santa Fe Institute working group and edited by Ricard SolĂ© (Universitat Pompeu Fabra), Melanie Moses (University of New Mexico), and Stephanie Forrest (Arizona State University).

###

Media Contact
J. Marshall
[email protected]
http://dx.doi.org/10.1098/rstb.2018.0378

Tags: Algorithms/ModelsBiologyMathematics/StatisticsSystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Why Malaria Parasites Contain Rapidly Spinning Iron Crystals

October 29, 2025
blank

Study of Greater Yellowstone Ecosystem Reveals How Large Mammals Respond to Heat

October 29, 2025

Microbes Regulate Mammalian Cell Growth: New Insights Unveiled

October 29, 2025

Blood Proteomics Reveals Aging Signature: A Preliminary Study

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ovarian Cancer Cells: Macrophage Interaction and Spheroid Formation

GLP-1 Drugs Show Promise for Weight Loss, but Further Independent Research Required

Ultrasound-Powered Programmable Artificial Muscles

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.