• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Green monkeys acquired Staphylococcus aureus from humans

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Already it's known that many deadly diseases that afflict humans were originally acquired through contact with animals. However new research from the University of Warwick shows that pathogens can also jump the species barrier to move from humans to animals.

The research which was co-authored by Mark Pallen, Professor of Microbial Genomics, Warwick Medical School, University of Warwick, has been published in the American Society of Microbiology's journal Applied and Environmental Microbiology.

The study shows that green monkeys in The Gambia acquired Staphylococcus aureus, one of the five most common causes of infections after injury or surgery, from humans.

In the study, experts isolated strains of S. aureus from the noses of healthy monkeys in The Gambia and compared the monkey strains with strains isolated from humans in similar locations. Professor Pallen said: "We used a technique known as high-throughput sequencing to gain an exquisitely detailed view of the relationships between the various strains. The results showed that monkeys had acquired S. aureus strains from humans on multiple occasions."

Most of the S. aureus found in monkeys were part of a clade, a group with common ancestors, which appeared to have resulted from a human-to-monkey transmission event that occurred 2,700 years ago.

Two of the most recent human-to-monkey transmission events appear to have taken place around three decades ago, and roughly seven years ago, respectively. These events appear to be the result of human encroachment into the monkeys' natural habitat, and probably resulted from transfer of human bacteria from hands to food that was then fed to monkeys, according to the report.

"Although wild, these monkeys are accustomed to humans, who often feed them peanuts," explained co-author Dr Martin Antonio, Unit Molecular Biologist & Principal Investigator, Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, who led the work in The Gambia.

The investigators found no evidence of transmission of S. aureus from monkeys to humans. Interestingly, strains that jump from humans to monkeys lose genes that are known to confer adaptation to the human host.

Humans acquired many of the diseases that have been among the deadliest, historically, from the livestock domesticated in the early years of civilization. In the last few generations, the combination of increasing human encroachment on wild ecosystems, and increasing human travel has led to acquisition and spread of diseases ranging from HIV to Lyme disease. Professor Pallen added: "As humans encroach ever more steadily into natural ecosystems, the risk increases that pathogens will be transmitted from humans to animals, or vice versa."

The full study can be read online at: http://aem.asm.org/content/early/2016/07/12/AEM.01496-16.full.pdf+html.

###

Notes to Editors

doi:10.1128/AEM.01496-16

Whole-genome sequencing reveals transmission of Staphylococcus aureus from humans to green monkeys in The Gambia. Published in the American Society of Microbiology's journal Applied and Environmental Microbiology

Authors

Madikay Senghore Medical Research Council Unit, The Gambia; University of Warwick Sion C Bayliss University of Bath Brenda A Kwambana-Adams Medical Research Council Unit, The Gambia; University of Bath Ebenezer Foster-Nyarko Medical Research Council Unit, The Gambia Jainaba Manneh Medical Research Council Unit, The Gambia Michel Dione Medical Research Council Unit, The Gambia Henry Badji Medical Research Council Unit, The Gambia Chinelo Ebruke Medical Research Council Unit, The Gambia; University of California Los Angeles Emma L Doughty University of Warwick Harry A Thorpe University of Bath Anna J Jasinska University of California Los Angeles Christopher A Schmitt University of California Los Angeles; American Military University and American Public University Jennifer D Cramer University of California Los Angeles Trudy R Turner University of Wisconsin-Milwaukee George Weinstock Washington University, St. Louis, Missouri Nelson B Freimer University of California Los Angeles; University of Wisconsin-Milwaukee Mark J Pallen University of Warwick Edward J Feil University of Bath Martin Antonio Medical Research Council Unit, The Gambia, University of Warwick; University of the Free State, Bloemfontein, South Africa; London School of Hygiene & Tropical Medicine,

The American Society for Microbiology is the largest single life science society, composed of over 47,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

Media Contact

Nicola Jones
[email protected]
07-920-531-221
@warwicknewsroom

http://www.warwick.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.