• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Graphene from soybeans

Bioengineer by Bioengineer
February 15, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.

Graphene is a carbon material that is one atom thick.

Its thin composition and high conductivity means it is used in applications ranging from miniaturised electronics to biomedical devices.

These properties also enable thinner wire connections; providing extensive benefits for computers, solar panels, batteries, sensors and other devices.

Until now, the high cost of graphene production has been the major roadblock in its commercialisation.

Previously, graphene was grown in a highly-controlled environment with explosive compressed gases, requiring long hours of operation at high temperatures and extensive vacuum processing.

CSIRO scientists have developed a novel "GraphAir" technology which eliminates the need for such a highly-controlled environment.

The technology grows graphene film in ambient air with a natural precursor, making its production faster and simpler.

"This ambient-air process for graphene fabrication is fast, simple, safe, potentially scalable, and integration-friendly," CSIRO scientist Dr Zhao Jun Han, co-author of the paper published today in Nature Communications said.

"Our unique technology is expected to reduce the cost of graphene production and improve the uptake in new applications."

GraphAir transforms soybean oil – a renewable, natural material – into graphene films in a single step.

"Our GraphAir technology results in good and transformable graphene properties, comparable to graphene made by conventional methods," CSIRO scientist and co-author of the study Dr Dong Han Seo said.

With heat, soybean oil breaks down into a range of carbon building units that are essential for the synthesis of graphene.

The team also transformed other types of renewable and even waste oil, such as those leftover from barbecues or cooking, into graphene films.

"We can now recycle waste oils that would have otherwise been discarded and transform them into something useful," Dr Seo said.

The potential applications of graphene include water filtration and purification, renewable energy, sensors, personalised healthcare and medicine, to name a few.

Graphene has excellent electronic, mechanical, thermal and optical properties as well.

Its uses range from improving battery performance in energy devices, to cheaper solar panels.

CSIRO are looking to partner with industry to find new uses for graphene.

Researchers from The University of Sydney, University of Technology Sydney and The Queensland University of Technology also contributed to this work.

###

Media Contact

Rachael Vorwerk
[email protected]
61-395-458-182
@csironews

http://www.csiro.au

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Unleashing β-Glucosidase from Rasamsonia for Sugarcane Saccharification

November 6, 2025
Millisecond Qubit Lifetimes Achieved in 2D

Millisecond Qubit Lifetimes Achieved in 2D

November 6, 2025

Ethiopian Traditional Medicine: Herbal Remedies in Menz Keya

November 6, 2025

Nursing Resilience: Adapting Through Challenges in Integration

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unleashing β-Glucosidase from Rasamsonia for Sugarcane Saccharification

Millisecond Qubit Lifetimes Achieved in 2D

Ethiopian Traditional Medicine: Herbal Remedies in Menz Keya

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.