• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Evolution

A GPS in Your DNA

Bioengineer by Bioengineer
February 16, 2014
in Evolution, Genomics
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have devised a method for more precisely determining the geographical location of a person’s ancestral origins based on a model of genetic traits for every coordinate on the globe.

A GPS in Your DNA

While your DNA is unique, it also tells the tale of your family line. It carries the genetic history of your ancestors down through the generations. Now, says a Tel Aviv University researcher, it’s also possible to use it as a map to your family’s past.

Prof. Eran Halperin of TAU’s Blavatnik School of Computer Science and Department of Molecular Microbiology and Biotechnology, along with a group of researchers from University of California, Los Angeles, are giving new meaning to the term “genetic mapping.” Using a probabilistic model of genetic traits for every coordinate on the globe, the researchers have developed a method for determining more precisely the geographical location of a person’s ancestral origins.

The new method is able to pinpoint more specific locations for an individual’s ancestors, for example placing an individual’s father in Paris and mother in Barcelona. Previous methods would “split the difference” and place this origin inaccurately at a site between those two cities, such as Lyon.
Published in the journal Nature Genetics, this method has the potential to reveal the ancestry, origins, and migration patterns of many different human and animal populations. It could also be a new model for learning about the genome.

Points of origin

There are points in the human genome called SNPs that are manifested differently in each individual, explains Prof. Halperin. These points mutated sometime in the past and the mutation was then passed to a large part of the population in a particular geographic region. The probability of a person possessing these mutations today varies depending on the geographical location of those early ancestors.

“We wanted to ask, for example, about the probability of having the genetic mutation ‘A’ in a particular position on the genome based on geographical coordinates,” he says. When you look at many of these positions together in a bigger picture, it’s possible to group populations with the same mutation by point of origin.

To test their method, Prof. Halperin and his fellow researchers studied DNA samples from 1,157 people from across Europe. Using a probabilistic mathematical algorithm based on mutations in the genome, they were able to accurately determine their ancestral point or points of origin using only DNA data and the new mathematical model, unravelling genetic information to ascertain two separate points on the map for the mother and father. The researchers hope to extend this model to identify the origins of grandparents, great-grandparents, and so on.

The new method could provide information that has applications in population genetic studies — to study a disease that impacts a particular group, for example. Researchers can track changes in different genomic traits across a map, such as the tendency for southern Europeans to have a mutation in a gene that causes lactose intolerance, a mutation missing from that gene in northern Europeans.

A closer look at migration

The researchers believe that their model could have also relevance for the animal kingdom, tracking the movement of animal populations. “In principle, you could figure out where the animals have migrated from, and as a result learn about habitat changes due to historical climate change or other factors,” says Prof. Halperin.

Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Artificial intelligence finds surprising patterns in Earth’s biological mass extinctions

December 10, 2020
IMAGE

First-known fossil iguana burrow found in the Bahamas

December 9, 2020

‘Spooky Interactions’, shocking adaptations discovered in electric fish of Brazil’s Amazon

December 9, 2020

New evidence: Neandertals buried their dead

December 9, 2020
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discrepancies Between Creatinine and Cystatin C eGFR Estimates Linked to Clinical Outcomes

Mismatch Between Two Kidney Function Tests Signals Increased Risk of Serious Health Issues

Improving Care Quality: Lean Healthcare Performance Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.