• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Good prospects for altermagnets in spin-based electronics

Bioengineer by Bioengineer
March 13, 2024
in Chemistry
Reading Time: 2 mins read
0
crsb
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Altermagnets represent a newly recognized class of materials in magnetism that could enable novel applications in spin-based electronics. Their magnetically ordered state consists of an antiparallel arrangement of microscopic magnetic moments, so-called spins, as in antiferromagnets. In contrast to antiferromagnetism, however, the altermagnetic state with zero net-magnetization enables the generation of electrical currents with spin polarization, as required in spin-based electronics. Thus, altermagnets combine the advantages of antiferromagnets, i.e., ultrafast dynamics, and ferromagnets, i.e., large spin polarization.

crsb

Credit: ill./©: Libor Šmejkal and Anna Birk Hellenes / JGU

Altermagnets represent a newly recognized class of materials in magnetism that could enable novel applications in spin-based electronics. Their magnetically ordered state consists of an antiparallel arrangement of microscopic magnetic moments, so-called spins, as in antiferromagnets. In contrast to antiferromagnetism, however, the altermagnetic state with zero net-magnetization enables the generation of electrical currents with spin polarization, as required in spin-based electronics. Thus, altermagnets combine the advantages of antiferromagnets, i.e., ultrafast dynamics, and ferromagnets, i.e., large spin polarization.

In collaboration with a theoretical team led by Professor Jairo Sinova and Dr. Libor Šmejkal, experimental physicist Dr. Sonka Reimers and her colleagues in Professor Mathias Kläui’s lab at the Institute of Physics at Johannes Gutenberg University Mainz (JGU) have demonstrated altermagnetic electronic band splitting associated with spin polarization in CrSb. “The magnitude of this spitting, observed in a good conductor and at room temperature, is extraordinary and promising with regard to electronic applications of altermagnetic materials”, said Professor Martin Jourdan, coordinator of the study recently published in Nature Communications.

 

Related links:

  • https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui Lab at the JGU Institute of Physics
  • https://www.blogs.uni-mainz.de/fb08-iph-eng/ – Institute of Physics at Johannes Gutenberg University Mainz (JGU)

 

Read more:

  • https://press.uni-mainz.de/scientists-directly-observed-altermagnetism/ – press release “Scientists directly observed altermagnetism” (19 Feb. 2024)
  • https://press.uni-mainz.de/altermagnetism-experimentally-demonstrated/ – press release “Altermagnetism experimentally demonstrated” (15 Feb. 2024)
  • https://press.uni-mainz.de/efficient-read-out-in-antiferromagnetic-spintronics/ – press release “Efficient read-out in antiferromagnetic spintronics” (25 Nov. 2021)
  • https://press.uni-mainz.de/detecting-damage-in-non-magnetic-steel-with-the-help-of-magnetism/ – press release “Detecting damage in non-magnetic steel with the help of magnetism” (24 July 2018)
  • https://press.uni-mainz.de/antiferromagnets-prove-their-potential-for-spin-based-information-technology/ – press release “Antiferromagnets prove their potential for spin-based information technology” (29 Jan. 2018)


Journal

Nature Communications

DOI

10.1038/s41467-024-46476-5

Article Title

Direct observation of altermagnetic band splitting in CrSb thin films

Article Publication Date

8-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Transforming Bioplastics: Microbial Innovation Enables Fully Bio-Based Long-Chain Polyesters

October 9, 2025
blank

Tracking Bandgap Dynamics in Real Time: Attosecond Interferometry Unveils Ultrafast Processes in Solids

October 9, 2025

Streamlined Ion Diffusivity Calculations with FastTrack: Simplifying Breakthroughs in Science

October 9, 2025

Targeted Boron-Heteroatom Group Exchange Reactions Unveiled

October 9, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1173 shares
    Share 468 Tweet 293
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain & Behavior Research Foundation Honors Five Top Psychiatric Researchers with 2025 Outstanding Achievement Prizes

Urological Models Verified with Human Penile Tissue Tests

Emergency Nurses’ Presenteeism: A Qualitative Insight

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.