• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Glyphosate residue in manure fertilizer decrease strawberry and meadow fescue growth

Bioengineer by Bioengineer
September 18, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Viivi Saikkonen

A new study finds that glyphosate residue in manure fertilizer decrease the growth of strawberry and meadow fescue as well as runner production of strawberry.

Earlier experiments with Japanese quails showed how glyphosate residue in poultry feed accumulated in quail manure. In these experiments, half of the quails were fed with glyphosate-contaminated feed while the control group were fed with organic feed free from glyphosate residues. This allowed testing whether glyphosate residues in poultry manure affect crop plants if the manure is used as a fertilizer.

“We established an experimental field where we planted both strawberry and meadow fescue. These plants were fertilized with bedding material containing excrements from quails raised on feed containing glyphosate residue and organic feed free of the residue,” tells Senior Researcher Anne Muola from the Biodiversity Unit of the University of Turku, Finland.

Decreased growth as well as indirect effects

The growth and reproduction of strawberry and meadow fescue were monitored throughout one growing season. High amount of glyphosate residue (158 mg/kg) decreased the growth of both studied crop plants and runner production of strawberry even if the amount of glyphosate in the soil decreased fast during the growing season.

In addition, the manure fertilizer containing glyphosate residue was found to have indirect effects. Larger meadow fescues were producing more inflorescences and herbivorous insects preferred larger strawberries.

“Our results support earlier studies which have found that already very small glyphosate residue (

Glyphosate-based herbicides are the most frequently used herbicides globally. Many GMO crops are so called “glyphosate ready” meaning that they are resistant to glyphosate. This allows agricultural practices where glyphosate is applied in considerable amounts which increases the likelihood of its residue ending up in animal feed.

“For instance, the cultivation of GM soy is not allowed in the EU. Still, soy is an excellent energy and protein source and it is imported from outside the EU to be used as a component in animal feed. The glyphosate residues in feed are then accumulated in poultry excrement,” says Marjo Helander and continues:

“Poultry manure is rich in essential nutrients and organic compounds, and thus, to increase the sustainability of poultry industry, regulations suggest that poultry manure should be used as an organic fertilizer. However, this can lead into a situation where glyphosate can be unintentionally spread to fields or gardens via organic fertilizer, counteracting its ability to promote plant growth.”

###

Media Contact
Marjo Helander
[email protected]

Original Source

https://www.utu.fi/en/news/press-release/glyphosate-residue-in-manure-fertilizer-decrease-strawberry-and-meadow-fescue

Related Journal Article

http://dx.doi.org/10.1016/j.scitotenv.2020.141422

Tags: Agricultural Production/EconomicsAgricultureBiologyFertilizers/Pest ManagementPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

First Cannibalism Observed in Red-Finger Rubble Crab

September 10, 2025
Researchers Identify Optimal Flight Speed That Aids Nightingales During Long-Distance Migration

Researchers Identify Optimal Flight Speed That Aids Nightingales During Long-Distance Migration

September 10, 2025

Meet the Creature with the Highest Chromosome Count: A Genetic Marvel Unveiled

September 10, 2025

Designed to Learn: How Early Brain Structure Sets the Stage for Efficient Learning

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

First Cannibalism Observed in Red-Finger Rubble Crab

Energy Shortage Triggers Crowded Epithelial Cell Extrusion

Advancements in Track-Before-Detect Algorithm Boost Maritime Surveillance Using GNSS Signals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.