• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Glowing fossils: Fluorescence reveals colour patterns of earliest scallops

Bioengineer by Bioengineer
November 1, 2022
in Biology
Reading Time: 3 mins read
0
Scallop Pleuronectites from the Triassic period
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UV light makes it possible to see intricate structures of fossils that are barely visible in normal daylight. This method has often been used on the fossilised seashells from the Earth’s current geological era to reveal patterns of colour that had long since faded away. Now, research by a scientist from the University of Göttingen shows that fluorescent colour patterns can even be found in shells that are around 240 million years old, from the Earth’s Mesozoic Era. This makes them the oldest fluorescent colour patterns found so far. The results of this study have been published in the journal Palaeontology.

Scallop Pleuronectites from the Triassic period

Credit: Klaus Wolkenstein

UV light makes it possible to see intricate structures of fossils that are barely visible in normal daylight. This method has often been used on the fossilised seashells from the Earth’s current geological era to reveal patterns of colour that had long since faded away. Now, research by a scientist from the University of Göttingen shows that fluorescent colour patterns can even be found in shells that are around 240 million years old, from the Earth’s Mesozoic Era. This makes them the oldest fluorescent colour patterns found so far. The results of this study have been published in the journal Palaeontology.

 

In fossils from the Mesozoic Era, traces of colour patterns are very rarely observed. However, the investigation with UV light of scallops from the Triassic period – right from the beginning of the Mesozoic Era – shows that colour patterns are preserved much more frequently than previously thought. UV light, which is invisible to the human eye, excites organic compounds in the fossils causing them to glow. This reveals a surprising variety of colour patterns: different variations of stripes, zigzags and flame patterns. The diversity of colour patterns is similar to those of today’s seashells found on a beach.

 

However, the colour patterns of today’s scallops do not show any fluorescence. “In the case of the Triassic shells, fluorescent compounds were only formed in the course of fossilisation through oxidation of the original pigments,” explains Dr Klaus Wolkenstein from the Geosciences Centre at the University of Göttingen, who is currently carrying out research at the University of Bonn. Surprisingly, the fossil shells show different fluorescent colours, depending on the region where they were found. “The colour spectrum ranges from yellow to red with all the transitions in between, which suggests that there were clear regional differences in the fossilisation of these scallops,” adds Wolkenstein.

 

Original publication: Wolkenstein, K. (2022): Fluorescent colour patterns in the basal pectinid Pleuronectites from the Middle Triassic of Central Europe: origin, fate and taxonomic implications of fluorescence. Palaeontology. doi: 10.1111/pala.12625

 

Contact:
Dr Klaus Wolkenstein

University of Göttingen

Geoscience Center – Geobiology Department

Goldschmidtstraße 3, 37077 Göttingen, Germany

Tel: +49 (0)551-39-7960

Email: [email protected]



Journal

Palaeontology

DOI

10.1111/pala.12625

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Fluorescent colour patterns in the basal pectinid Pleuronectites from the Middle Triassic of Central Europe: origin, fate and taxonomic implications of fluorescence

Article Publication Date

27-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025
When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025

Watch and Listen: Underwater Acrobatics of the World’s Smallest Marine Dolphin Featured in Science Magazine

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Biochar Discovery Promises Cleaner, Safer Farmland Soils

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

Innovative CuO/SnO₂ Nanocomposites Enhance Photocatalysis and Supercapacitors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.