• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Glowing COVID-19 diagnostic test prototype produces results in one minute

Bioengineer by Bioengineer
January 17, 2024
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? Now, in ACS Central Science, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.

Glowing COVID-19 diagnostic test prototype produces results in one minute

Credit: Ryo Nishihara

Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? Now, in ACS Central Science, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.

From fireflies to lantern fish, many animals possess the chemical tools to produce light. Typically, this reaction requires the substrate luciferin and the enzyme luciferase. However, a class of less discriminating luciferins, known as imidazopyrazinone-type (IPT) compounds, can glow when encountering other proteins, including ones that aren’t considered enzymes. Previous research suggests that IPT luciferins could serve as the basis for a new type of medical test that uses luminescence to announce the presence of a target protein in a specimen. Ryo Nishihara, Ryoji Kurita and colleagues suspected that an IPT luciferin could react with the SARS-CoV-2 spike protein, which allows the virus particles to invade cells and cause COVID-19 ― and open the door to develop a glowing test.

The team first investigated 36 different IPT luciferins’ abilities to react with a single unit of spike protein. Only one molecule, which came from tiny crustaceans from the genus Cypridina, emitted light. The researchers then tested the luciferin’s activity with the spike protein in its natural state, as three units folded together. They found that, over the course of 10 minutes, an adequate amount of light could be detected. A commercially available luminescence reading device was required; the light could not be seen by the naked eye. Additional experiments indicated that the IPT luciferin was selective because it did not glow when exposed to six proteins that occur in saliva. They define this specific luminescence reaction by non-luciferase biomolecules as “biomolecule-catalyzing chemiluminescence (BCL)”.

Finally, they found that the luciferin could detect the amount of the spike protein in saliva with the same accuracy as a technique currently used in vaccine development. However, the luciferin system delivered results in one minute — significantly faster than the current rapid point-of-care tests.

This BCL-based approach could serve as the basis for a simple “mix and read” test in which the IPT luciferin is added to untreated saliva from someone suspected of having COVID-19, according to the researchers. They note that a similar approach could be adapted to detect other viruses that possess spike-like proteins, such as influenza, MERS-CoV and other coronaviruses.

The authors acknowledge funding from the Japan Science and Technology Agency, the Japan Society for the Promotion of Science, and the New Energy and Industrial Technology Development Organization.

The paper’s abstract will be available on Jan. 17 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acscentsci.3c00887

###

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

Follow us: Twitter | Facebook | LinkedIn | Instagram



Journal

ACS Central Science

DOI

10.1021/acscentsci.3c00887

Article Title

Pseudo-Luciferase Activity of the SARS-CoV‑2 Spike Protein for Cypridina Luciferin

Article Publication Date

17-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025
Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

August 21, 2025

Exploring Dark Matter Through Exoplanet Research

August 21, 2025

The Evolution of Metalenses: From Single Devices to Integrated Arrays

August 21, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Natural Disinfectants: Their Role in Prosthodontics and Oral Implantology

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

New Study Finds No Connection Between Antibiotic Use and Autoimmune Diseases in Children

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.