• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Giant photothermoelectric effect in silicon nanoribbon photodetectors

Bioengineer by Bioengineer
August 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Wei Dai, Weikang Liu, Jian Yang, Chao Xu, Alessandro Alabastri, Chang Liu, Peter Nordlander, Zhiqiang Guan, and Hongxing Xu

Photoelectric conversion is an efficient and green way of energy conversion, which has important applications in light energy utilization and optical information devices. It is reported that up to 40% of the energy loss in the single-junction solar cells is due to the thermal loss of the carrier and the low light absorption of the device. The utilization of hot carrier energy in nanomaterials is the key to further improve the photoelectric conversion efficiency. Photothermoelectric effect is a photoelectric response driven by the gradient distribution of carrier temperature which is different from the lattice temperature. This effect has been reported in low dimensional nanomaterials, such as carbon nanotubes, III-V semiconductor nanowires, graphene, black phosphorus, and so on. Unfortunately, due to the low light absorption of low dimensional nanomaterials and the lack of high quality and reliable fabrication process, the photothermoelectric effect is still difficult to be applied in practical applications.

In a new paper published in Light Science & Application, a team of scientists, led by Academician Hongxing Xu and Associate Professor Zhiqiang Guan from School of Physics and Technology, Wuhan University, China, and co-workers have observed the giant photothermoelectric effect in the earth-abundant and CMOS compatible silicon nanomaterials. The photoelectric response of the photothermoelectric effect is 3-4 orders of magnitude higher than that reported previously, benefitting from the optimization process by the photo-thermal-electric multi-physics model with the carrier-lattice two-temperature model. It provides an important way for the practical application of photothermoelectric effect to improve photoelectric conversion efficiency by using hot carrier energy.

Photothermoelectric effect is a new type of photoelectric conversion mechanism, which uses the temperature gradient of photogenerated hot carriers to drive the directional movement of carriers and generate open-circuit voltage or short-circuit current photoelectric response. This effect usually occurs in low-dimensional nanomaterials due to the limited energy exchange between hot carriers and phonons by the suppressed phonon scattering and induces the carrier temperature different from the lattice temperature. Previous studies on hot carriers in silicon materials were mainly focused on the transient hot carrier temperature generated by short-pulse laser. The photothermoelectric effect based on the temperature distribution of steady hot carriers is rarely reported. These scientists summarized the reasons for the successful observation of giant photothermoelectric effects in silicon nanomaterials:

“The successful observation of photothermoelectric effect depends on ohmic electrode contact, appropriate doping concentration and size-limited carrier-phonon interaction. Ohmic electrode contact avoids the interference of the photovoltaic effect. The low doping concentration and the carrier-phonon interaction time up to 160 ps result in a stable temperature difference of 300K at the hot and cold end of the device and an open circuit photovoltage response of 105 V/W under 633 nm laser irradiation. The successful modeling of experimental results and the optimization of photothermoelectric effect by the photo-thermal-electric multi-physics model with the carrier-lattice two-temperature model are also the key to success.”

“It is very interesting to study the generation, relaxation and transportation of photogenerated carriers in nanomaterials. How to utilize the energy of hot carriers is a great challenge. Although the reported photothermoelectric effect in this paper faces the problems of slow speed and low energy filling ratio, we hope the further in-depth study of the photothermoelectric effect and the synergistic effect of photothermoelectric effect with other photoelectric conversion mechanisms such as photovoltaic effect and with the plasmon-enhanced light absorption, will finally break the limit of photoelectric conversion efficiency by using hot carrier energy.” they added.

###

Media Contact
Zhiqiang Guan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00364-x

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Registration Now Open for One of the World’s Largest Fluid Dynamics Conferences

Registration Now Open for One of the World’s Largest Fluid Dynamics Conferences

October 14, 2025
WashU Chemists Uncover New Insights Into Protein Linked to ALS

WashU Chemists Uncover New Insights Into Protein Linked to ALS

October 14, 2025

SwRI’s Dr. Chris Thomas Honored as AIAA Associate Fellow

October 14, 2025

Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1242 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probabilistic Computer Leverages Magnetic Tunnel Junctions for Entropy

Machine Learning Forecasts Muscle Loss Post-Transplant

Challenges in Long-Term Care for Spinal Cord Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.