• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Giant neurons in the brain may play similarly giant role in awareness and cognition

Bioengineer by Bioengineer
July 23, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Laboratory of Neurobiology and Behavior at The Rockefeller University

There is no shortage of wonders that our central nervous system produces–from thought and language to movement to the five senses. All of those dazzling traits, however, depend on an underappreciated deep brain mechanism that Donald Pfaff, head of the Laboratory of Neurobiology and Behavior at The Rockefeller University, calls generalized arousal, or GA for short. GA is what wakes us up in the morning and keeps us aware and in touch with ourselves and our environment throughout our conscious hours.

"It's so fundamental that we don't pay attention to it," says Pfaff, "and yet it's so important that we should."

Pfaff and his team of researchers certainly do. Now, in a series of experiments involving a particular type of brain cell, they have advanced our understanding of the roots of consciousness. Their work may potentially prove relevant in the study of some psychiatric diseases.

The big cells in the black box

The findings, published this month in Proceedings of the National Academy of Sciences, shed light on an area of the brainstem that is so little understood the first author of the paper, Inna Tabansky, a research associate in Pfaff's lab, calls it "the black box." That term is certainly simpler than its actual name–the nucleus gigantocellularis (NGC), which is part of a structure called the medullary reticular formation.

In her work, using mice, Tabansky focused on a subtype of extremely large neurons in the NGC with links to virtually the entire nervous system, including the thalamus, where neurons can activate the entire cerebral cortex. "If you just look at the morphology of NGC neurons, you know they're important," Pfaff says. "It's just a question of what they're important for. I think they're essential for the initiation of any behavior."

To discover what role the NGC neurons might play in GA, Tabansky and her colleagues, including Joel Stern, a visiting professor in the Pfaff lab, began by identifying the genes that these neurons express. They used a technique known as "retro-TRAP," developed in the lab of Rockefeller scientist Jeffrey Friedman.

To Tabansky's surprise, the NGC neurons were found to express the gene for an enzyme, endothelial nitric oxide synthase (eNOS), which produces nitric oxide, which in turn relaxes blood vessels, increasing the flow of oxygenated blood to tissue. (No other neurons in the brain are known to produce eNOS.) They also discovered that the eNOS-expressing NGC neurons are located close to blood vessels.

In Pfaff's view, the neurons are so critical for the normal functions of the central nervous system that they have evolved the ability to control their own blood supply directly. '"We're pretty sure that if these neurons need more oxygen and glucose, they will release nitric oxide into these nearby blood vessels in order to get it," he says.

The circumstances that would prompt such a response were the subject of further experiments. The scientists found evidence that changes in the environment, such as the introduction of novel scents, activated eNOS in the NGC neurons and produced increased amounts of nitric oxide in mice.

"There is some low level of production when the animal is in a familiar setting," says Tabansky, "which is what you expect as they maintain arousal. But it is vastly increased when the animal is adapting to a new environment." This activation of the NGC neurons supports the case for their central role in arousal, Tabansky says.

From cells to psychiatry

Going forward, Tabansky says she's interested in exploring if their findings might help fill a gap in the understanding of certain disorders, such as bipolar disorder, suicidality, and ADHD. Some genetic research has implicated a role for the neurons she studied in these diseases, but the mechanism behind this link is not known.

"By showing that this gene and its associated pathways have a particular role, at least in the rodent brain, that relates to a fundamental function of the nervous system, is a hint about how this gene can cause psychiatric disease," she says. "It's very preliminary, and there is a lot more work to be done, but it potentially opens a new way to study how this gene can alter an individual's psychology."

###

Media Contact

Lori Chertoff
[email protected]
212-327-7741
@rockefelleruniv

http://www.rockefeller.edu

Original Source

https://www.rockefeller.edu/news/23275-giant-neurons-in-the-brain-may-play-similarly-giant-role-in-awareness-and-cognition/ http://dx.doi.org/10.1073/pnas.1806123115

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Some Birds Shy Away from New Experiences: The Science Behind Avian Neophobia

Why Some Birds Shy Away from New Experiences: The Science Behind Avian Neophobia

October 14, 2025
blank

Estrogen Responses Reveal Sex Differences in Macrophages

October 14, 2025

MIT Researchers Create Breakthrough System to Precisely Control Synthetic Gene Expression

October 14, 2025

Ateneo Scientists Explore Promising Anti-Ulcer Vaccine Development

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1241 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Biomarker Panel Predicts Prostate Cancer Outcomes

Timing of Chemo Affects Survival in Elderly

Evaluating Albendazole Quality in Nepal’s Veterinary Pharmacies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.