• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Getting to bottom of crater formation

Bioengineer by Bioengineer
November 17, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: @ECORD_IODP

The first results of a recent drilling expedition at Chicxulub crater – one of the only known craters on Earth with a well-preserved "peak ring" – reveal how it collapsed to form a complex crater. The insights confirm one of two prominent theories that best describe this type of structure, and provide a better understanding of crater-related deep subsurface processes. Medium and large-sized craters often exhibit a central peak, which in some cases may evolve into a peak ring, an uneven ring of rocky hills within the crater bowl. Most peak rings exist on extraterrestrial bodies, such as the Moon or Venus, making it difficult to analyze these structures in great detail. On Earth, the most well-preserved crater with a peak ring is Chicxulub, the roughly 200 kilometer-wide basin in Mexico's Yucatán Peninsula. Here, to better understand processes underlying the formation of peak rings, Joanna Morgan and colleagues used data on seismic and sonic waves, and core samples from between roughly 500 to 1,300 meters below the seafloor of Chicxulub, obtained during a drilling expedition in the spring of 2016. Following further analysis, including numerical simulations, they report that their results align with the dynamic collapse model theory of crater formation, where the central peak collapses to form a ring of peaks. Their analysis rules out an alternative hypothesis that suggests that, as the center of the peak is uplifted, melting of the uppermost part of the peak causes the material to disperse into a ring of peaks. A Perspective by Penny Barton delves into these findings in greater detail.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

September 16, 2025

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

September 16, 2025

SFU Unveils Canada’s Fastest Academic Supercomputer Following $80 Million Upgrade

September 16, 2025

GLP-1 Drugs Demonstrated as Cost-Effective Treatment for Knee Osteoarthritis and Obesity

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

SFU Unveils Canada’s Fastest Academic Supercomputer Following $80 Million Upgrade

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.