• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Georgia State scientist gets $1.675 million to study link between cancer and DNA replication, repair

Bioengineer.org by Bioengineer.org
January 24, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

ATLANTA–Ivaylo Ivanov, associate professor of chemistry at Georgia State University, has received a five-year, $1.675 million federal grant to study how problems with DNA replication and repair may lead to cancer susceptibility and inheritable genetic diseases.

The project is funded by the National Institute of General Medical Sciences of the National Institutes of Health and could have an impact on scientists' fundamental understanding of the causes of cancer.

DNA replication and repair are essential life processes that are critical for maintaining the genome. The study will analyze certain core replication complexes that are crucial for repairing damaged DNA and intimately connected to cancer initiation and progression.

"This has implications for human health because the maintenance of the genome is tightly linked to disease, specifically cancer or inherited genetic disorders," Ivanov said.

While the structures of many individual replication proteins have been determined, the assembly of larger replication complexes remain unstudied. The project will focus on the assembly of the core replication proteins DNA ligase 1 (Lig 1) and Flap Endonuclease 1 (FEN1) on Proliferating Cell Nuclear Antigen (PCNA) or Rad9-Hus1-Rad1 (9-1-1).

In DNA replication, enzymes called DNA polymerases create DNA by assembling nucleotides, the building blocks of DNA. DNA polymerases build two strands independently, a leading and a lagging strand. The leading strand gets replicated continuously as DNA polymerase incorporates nucleotides. Lagging strands are produced in discontinuous fragments, which are initiated by an RNA primer. To produce a continuous lagging strand, the replicating DNA polymerase has to exchange with other core replication proteins, such as FEN1 and Lig 1. FEN1 removes the RNA primer, and the fragment is connected to the previously synthesized fragment by Lig 1.

"Our purpose is to figure out how these different enzymes cooperate–the DNA polymerase which does the synthesis, the Flap Endonuclease 1 which excises the RNA primer and finally the DNA ligase which seals the nick in the DNA strand and forms one continuous strand," Ivanov said. "Basically, we're combining different structural methods such as single-molecule Forster Resonance Energy Transfer, electron microscopy and small-angle X-ray scattering in order to characterize these dynamic complexes."

Ivanov will use advanced computational methods to analyze structural data that is supplied by collaborators from across the country. His goal is to model and structurally characterize the assembly of key proteins that are critical in DNA replication and repair activities.

"The DNA replication machinery is exquisitely precise, but you have to put that precision into the context of the entire genome," Ivanov said. "Even a small error can magnify when you're talking about replicating millions of bases. That's where the concept of genome maintenance or DNA repair comes in. You have several different pathways that deal with different kinds of damage. These pathways sometimes are effective at correcting the damage. Sometimes they fail. The failure can lead to either cell death or apoptosis or it can lead to cancer progression."

###

Read the grant abstract at https://projectreporter.nih.gov/project_info_details.cfm?aid=8887687&icde=26757826.

Share13Tweet8Share2ShareShareShare2

Related Posts

Common Heartburn and Blood Pressure Medications Associated with Poorer Breast Cancer Prognosis in Extensive Global Study

November 5, 2025

Pediatric Spinal Cord Injury: Trends & 2045 Forecast

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025

Structural Snapshots Reveal μ-Opioid Nucleotide Release

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Common Heartburn and Blood Pressure Medications Associated with Poorer Breast Cancer Prognosis in Extensive Global Study

Pediatric Spinal Cord Injury: Trends & 2045 Forecast

Resilient Order Emerges from Chasing and Splashing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.