• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Genome sequencing method can detect clinically relevant mutations using 5 CTCs

Bioengineer by Bioengineer
August 15, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bottom Line: Whole genome sequencing using long fragment read (LFR), a technology that can analyze the entire genomic content of small numbers of cells, detected potentially targetable mutations using only five circulating tumor cells (CTCs) in a patient with metastatic breast cancer.

Journal in Which the Study was Published: Cancer Research, a journal of the American Association for Cancer Research.

Authors: Brock Peters, PhD, senior director of research at Complete Genomics Inc. in San Jose, California, and BGI-Shenzhen in Shenzhen, China; John W. Park, MD, professor of clinical medicine, and director of Novel Therapeutics, Breast Oncology, at University of California, San Francisco (UCSF); Hope S. Rugo, MD, professor of medicine and director of breast oncology and clinical trials education at UCSF.

How the Study Was Conducted and Results: The Complete Genomics team and colleagues from UCSF evaluated CTCs from two liquid biopsies drawn from a 61-year-old female patient with ER-positive/HER2-negative metastatic breast cancer at two different time points during her course of treatment. First, they isolated 34 highly pure CTCs using immunomagnetic enrichment/fluorescence-activated cell sorting (IE/FACS) technology developed by Park and Mark Magbanua, PhD, at UCSF. Then they used LFR to perform advanced whole-genome sequencing by splitting the genomic DNA from the CTCs into 3,072 individual compartments, with each compartment containing approximately 5 percent of the cancer genome. The DNA in each compartment was subsequently labeled with a unique barcode, the compartments were combined, and the genomic DNA and barcodes were sequenced.

"From 34 cells we accurately detected mutations present in as few as 12 percent of CTCs, established the tissue of origin, and identified potential personalized combination therapies for this patient's highly heterogeneous disease," said Peters.

According to Peters, this research is the first application of LFR technology to CTCs. "LFR subdivides the genome into compartments, allowing us to count the fragments with somatic mutations across all the compartments to accurately quantify the number of mutations present in a population of cells. It also serves to remove false-positive single nucleotide variants," explained Peters.

"LFR, which explores the more than 20,000 genes in the genome and all non-coding regions, is more comprehensive than gene panels, which examine about 100 genes and focus on small genomic regions typically associated with a disease," he continued.

Because prior studies indicate that five CTCs can be expected in about half of the patients with metastatic disease, and evaluating 34 CTCs is cost-prohibitive, Peters and colleagues analyzed five different batches of five CTCs and replicated their findings. The researchers estimated that the cost of their advanced whole genome sequencing technique on five CTCs would be about $3,000 within the next few years, in line with current oncology diagnostic tests.

"That our sequencing method could detect the most important somatic mutations from just five CTCs in a noninvasive liquid biopsy is important, demonstrating cost-effectiveness and utility in clinical settings," said Peters.

Authors' Comments: "Our work highlights the importance and utility of using accurate and quantitative whole genome analysis in a clinical setting," said Peters. "We identified targetable mutations that would have been missed by current clinical sequencing strategies. In the near precision medicine future, this type of information will be critical for selecting effective personalized multi-drug treatments."

Study co-author John W. Park, MD, professor of clinical medicine, and director of Novel Therapeutics, Breast Oncology, at University of California, San Francisco (UCSF), said, "We observed that it is possible to develop a robust strategy for liquid biopsy using whole genome sequencing of circulating tumor cells. This approach allows detailed molecular profiling across the patient's entire cancer genome."

Study co-author, Hope S. Rugo, MD, professor of medicine and director of breast oncology and clinical trials education at UCSF, said, "The IE/FACS allows for exquisite and full-scale isolation of highly pure CTCs with little or no contamination of normal blood cells, thus providing the robustness needed for accurate whole genome sequencing of a few cells. Taken together, the liquid biopsy platform we described in this study suggests a viable approach for minimally invasive yet comprehensive and real-time testing of metastatic cancer in the clinic."

Study Limitations: According to Peters, the main limitations to the study are that only a single patient was studied and none of the suggested possible therapies could actually be tested, emphasizing the need for larger studies.

###

Funding & Disclosures: The study was funded by Complete Genomics Inc., of which Peters is an employee and holds stock options. Funding was also provided by the Breast Cancer Research Foundation and the Shenzhen Municipal Government of China Peacock Plan. Complete Genomics Inc. and BGI-Shenzhen have filed several patents on this work.

Follow us: Cancer Research Catalyst http://blog.aacr.org; Twitter @AACR; and Facebook http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 37,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and patient advocates residing in 108 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 30 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 21,900 attendees. In addition, the AACR publishes eight prestigious, peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the Scientific Partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual investigator grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and other policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

Media Contact

Lauren Riley
[email protected]
215-446-7155
@aacr

Home

Share12Tweet7Share2ShareShareShare1

Related Posts

Islet Macrophages Remodeled by Limited β-Cell Death

Islet Macrophages Remodeled by Limited β-Cell Death

October 2, 2025

Exploring Disordered Eating and Identity in Students

October 2, 2025

Cysteine Boosts Gut Stem Cells via IL-22

October 2, 2025

Sudden Death Post-Aortic Valve Replacement Reveals Hypertrophic Cardiomyopathy

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    70 shares
    Share 28 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Islet Macrophages Remodeled by Limited β-Cell Death

Exploring Disordered Eating and Identity in Students

Cysteine Boosts Gut Stem Cells via IL-22

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.