• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Genome editing: Pressing the delete button on DNA

Bioengineer by Bioengineer
March 3, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Pulido-Quetglas et al. CCBY

Genomics is the field of research studying how our &laquogenome», or entire DNA sequence, specifies a human being, and how errors in this sequence give rise to diseases. Genomics was recently a &laquoread-only» endeavour: researchers used powerful technology to read genomes' sequence and their regulatory layers. However, until recently, there was no way to edit or delete DNA for either basic research objectives, or for potential therapeutic interventions.

Just a few years ago, this outlook changed dramatically with the discovery of a revolutionary technique for editing genomes: &laquoCRISPR-Cas9». CRISPR-Cas9 is a molecular tool composed of two simple components: a molecular barcode, called &laquosgRNA», which is designed by the researcher to recognise one precise location in the genome; and a protein, Cas9, that binds to a structured loop in the sgRNA. By introducing these two units, researchers may perform a wide range of operations on specific pieces of genomic DNA, from introducing small mutations, to regulating gene activity, to tagging it with small sequences. Until recently most studies employing CRISPR-Cas9 were aimed at silencing protein-coding genes, the best-studied part of our genome.

However, our genome consists of 99% of DNA that does not encode any protein. Often described as the &laquoDark Matter» of the genome, this &laquonon-coding DNA» is recognised to be crucially important for understanding all aspects of human biology, including disease and evolution. Until recently, the experimental tools to study this have not been available.

Researchers studying non-coding DNA have been particularly excited about the discovery of CRISPR-Cas9 because it can be used as a powerful tool for studying non-coding DNA for the first time. Prof Rory Johnson, former Staff Scientist at the Computational Biology of RNA Processing laboratory of the Centre for Genomic Regulation (CRG) in Barcelona, Spain and now group leader at the National Center of Competence in Research (NCCR) RNA&Disease and Department of Clinical Research of the University of Bern, recently created a tool based on CRISPR-Cas9, called &laquoDECKO», which can be used to delete any desired piece of non-coding DNA. The unique advantage of DECKO is that it uses two individual sgRNAs, acting like two molecular scissors that snip out a piece of DNA. Numerous researchers worldwide have adopted this approach, attracted by its simplicity and effectiveness.

While working on DECKO, Johnson and colleagues at the Guigo's laboratory realised that no software was available for designing the pairs of sgRNAs that are required, meaning that designing deletion experiments was time-consuming. To overcome this, the Masters student Carlos Pulido designed a software pipeline called CRISPETa. They were assisted by a team of laboratory researchers including co-first authors of this paper Estel Aparicio and Carme Arnan, who carried out experiments to validate the software's predictions.

CRISPETa is a powerful and flexible solution for designing CRISPR deletion experiments. The user tells CRISPETa what region they wish to delete, and the software returns a set of optimised pairs of sgRNAs that can directly be used by experimental researchers. One of the key features is that it can create designs at high scales, with future screening experiments in mind. Importantly, CRISPETa is designed for use by non-experts, and is available in a user friendly website, making CRISPR deletion available to the widest possible number of scientific and biomedical researchers.

In the CRISPETa study, the researchers also introduce a new version of DECKO, which is cheaper and faster than the previous one. The researchers showed that CRISPETa designs efficiently delete their desired targets in human cells. Most importantly, in those regions that give rise to RNA molecules, the researchers showed that the RNA molecules also carry the deletion.

CRISPETa will be useful for scientific researchers, from even the most modest experimental laboratory. These users may, for example, delete a suspected functional region of non-coding DNA, and test the outcome on cellular or molecular activity. This software will also be potentially valuable for groups aiming to utilise CRISPR deletion for therapeutic purposes, by for example, deleting a region of non-coding DNA that is suspected to cause a disease state. Therefore CRISPETa will be a valuable tool for the hundreds of research teams worldwide who are using CRISPR deletion.

&laquoWe hope that this new software tool will allow the greatest possible number of researchers to harness the power of CRISPR deletion in their research», says Carlos Pulido, the student who wrote the CRISPETa software.

&laquoUltimately, we expect that CRISPR deletion and other genome engineering tools to lead to a revolution in our ability to understand the genomic basis of disease, particularly in the 99% of DNA that does not encode proteins. Apart from being used as a basic research tool, CRISPR may even be used in the future as a powerful therapeutic to reverse disease-causing mutations», adds Rory Johnson.

###

This study was published in PLOS Computational Biology. It was mainly financially supported by the Spanish Ministry of Science, the Catalan Government, The European Reserarch Council at the European Comission under the FP7, the National Human Genome Research Institute of the National Institutes of Health, and partially funded by the SNF through the &laquoRNA & Disease» NCCR, led by the University of Bern.

Media Contact

Laia Cendrós
[email protected]
34-933-160-237
@CRGenomica

http://www.crg.es

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Continuous Operation of a 3,000-Qubit Quantum System

Continuous Operation of a 3,000-Qubit Quantum System

September 15, 2025
New Study Highlights the Promise of Collagen-Based Micro/Nanogels in Medical Applications

New Study Highlights the Promise of Collagen-Based Micro/Nanogels in Medical Applications

September 15, 2025

Scientists Develop Proximity Labeling Technique for Enhanced Antigen Amplification

September 15, 2025

Evaluating the Effectiveness and Safety of GLP-1 Receptor Agonists in Youths with Obesity or Type 2 Diabetes

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Continuous Operation of a 3,000-Qubit Quantum System

New Study Highlights the Promise of Collagen-Based Micro/Nanogels in Medical Applications

Scientists Develop Proximity Labeling Technique for Enhanced Antigen Amplification

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.