• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genome duplications as evolutionary adaptation strategy

Bioengineer by Bioengineer
September 23, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers study relationship of morphological variation and biological diversity in plants

IMAGE

Credit: Photo: Marcus Koch

Genome duplications play a major role in the development of forms and structures of plant organisms and their changes across long periods of evolution. Heidelberg University biologists under the direction of Prof. Dr Marcus Koch made this discovery in their research of the Brassicaceae family. To determine the scope of the different variations over 30 million years, they analysed all 4,000 species of this plant family and investigated at the genus level their morphological diversity with respect to all their characteristic traits. The results of this research were published in the journal Nature Communications.

The external form of a plant, also known as its morphology, notably depends on environmental factors and their influences. This is true over short time scales of individual development as well as over the long term on an evolutionary scale. “A plant species always embodies only a portion of the possible breadth of morphological variation in evolution, thus allowing related evolutionary lines to be studied as a group for their morphological disparity,” stresses Prof. Koch, who leads the Biodiversity and Plant Systematics research group at the Centre for Organismal Studies (COS) of Heidelberg University. The extent of this disparity can be viewed as evolutionary potential for adaptations to altered environments and an associated differentiation.

To measure the morphological variation, the researchers first recorded the characteristic traits of the 4,000 Brassicaceae species in a checklist describing the identity and correlations of the species. They then constructed a family tree on genus level from next generation sequencing DNA data to visualise and test the underlying evolutionary dynamics. The tree facilitates the study of complex traits and their development over the course of evolution and places them in the context of other processes and events such as genome duplications or major changes in speciation rates. Genome duplications, that is the multiplication of the whole genome in a cell, describe an exceptional process in land plants to make available additional genetic variability.

“One surprising result of our study is that there is no key innovation with respect to the morphological characteristics studied. The character traits constantly change and appear to be arbitrarily assembled over and over. The old evolutionary lines make use of the morphological potential in a different way but do not differ from one another in terms of their disparity. In this way, evolution can proceed quickly and divergently,” states Marcus Koch.

These patterns are associated with genome duplications, which reflect the genetic components, as well as a rapid increase in speciation rates as an expression of selection pressure of past and changing environments. Accordingly, present-day Brassicaceae exhibit more than 40 percent polyploid species, which underwent genome duplications and carry a multiple set of chromosomes. “That means that a species like thale cress, Arabidopsis thaliana, has gone through at least three genome duplications over the course of evolution of the flowering plants in the last 160 million years. Yet this species still has only ten chromosomes because the genomes have to be subsequently stabilised and usually scaled back down over the long term,” explains Prof. Koch.

The research was conducted mainly in the framework of the DFG priority program “Evolutionary Plant Solutions to Ecological Challenges” (SPP 1529). The data are available in a public access database.

###

Media Contact
Marcus Koch
[email protected]

Original Source

https://www.uni-heidelberg.de/en/newsroom/genome-duplications-evolutionary-adaptation-strategy

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17605-7

Tags: BiologyEvolutionGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Can Elephants Sense When We’re Watching Them?

Can Elephants Sense When We’re Watching Them?

October 2, 2025
H19 Mitigates Oxidative Stress in Diabetic Cardiomyopathy

H19 Mitigates Oxidative Stress in Diabetic Cardiomyopathy

October 2, 2025

Accurate Genome Size Estimation with HiFi Reads

October 2, 2025

Enhancing Drought-Tolerant PGPR for Rice Yield

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

APT20TTMG Modulates U1 snRNP in Glioblastoma Models

Overcoming Challenges in Metastatic Prostate Cancer Care

Utilizing Weighted Cox Regression in Time-to-Event Studies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.