• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genetic variation linked to response to anxiety could inform personalised therapies

Bioengineer by Bioengineer
July 2, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study in marmoset monkeys suggests that individual variation in genes alters our ability to regulate emotions, providing new insights that could help in the development of personalised therapies to tackle anxiety and depression.

Some individuals are at greater risk of developing anxiety and depression than others and this depends in part upon the interaction between our genes and our environment, such as stressful or adverse events in our lives. Moreover, some of those who develop anxiety or depression may respond better to treatment while others struggle to benefit.

Although much research has been dedicated to finding effective treatments, we still have a poor understanding of how mental health disorders such as these develop and of the underlying brain mechanisms.

A study published today in PNAS has identified specific brain mechanisms that may underlie how genetic variation in the serotonin transporter gene, a key gene that regulates mood and stress responses, can influence the way we respond to perceived threat.

In a previous study working with marmoset monkeys, Dr Andrea Santangelo in the laboratory of Professor Angela Roberts at the University of Cambridge showed that the particular variant of the gene carried by a monkey will influence whether it perceives an ambiguous stimulus as being high or low threat. This characteristic of an individual’s personality is called ‘trait anxiety’.

High trait anxiety is a risk factor in humans for developing anxiety and mood disorders, and genetic variation in the serotonin transporter gene has been linked with an increased likelihood of developing these disorders.

In this earlier study, the researchers showed that variants of the gene also affected how a monkey responds to certain medicines. Specifically, individuals carrying the variant of the gene associated with high anxiety actually increased their anxiety towards a threat immediately after treatment with a commonly-used antidepressant known as a ‘selective serotonin re-uptake inhibitor’, or SSRI. This so called ‘anxiogenic’ effect is often seen in patients in the early stages of treatment and is thought to be part of the reason why these patients do not respond favourably to SSRIs.

In this new study, Dr Santangelo and Professor Roberts, along with colleagues including those at the Wolfson Brain Imaging Centre and Translational Neuroimaging Laboratory, have revealed how variation in the serotonin transporter gene has an impact on the number of a specific type of serotonin receptor, known as the type 2A receptor, in a specific brain area. Receptors are proteins in the brain that enable particular molecules – in this case serotonin – to affect the function of nerve cells. Monkeys carrying the variant of the gene associated with high anxiety had lower numbers of this receptor, hence changing the way in which serotonin-based drugs act upon them.

Medicines targeting these receptors have recently been used in the treatment of anxiety and mood disorders, so these findings suggest that it could be important in the future to know what variant of the serotonin transporter gene an individual is carrying when deciding on a treatment strategy.

The specific brain area where the number of receptors was reduced was the insula cortex, an important site for integrating information about sensations coming from the body with cognitive information processed in other areas to generate feelings and self-awareness, and to help guide decision-making.

This new finding suggests that those cognitive behavioural therapies (CBT) that focus on controlling sensations from the body could help patients in whom SSRI drugs are not effective.

“As many as one in three people affected by anxiety and depression does not respond to anti-depressants, so we need to find better treatments to help improve their quality of life,” says Dr Santangelo from the Department of the Physiology, Development and Neuroscience at the University of Cambridge.

“Our research suggests that differences in our DNA may help predict which of us will respond well to these medicines and which of us require a different approach. This could be assessed using genetic testing.”

###

The research was carried out using marmoset monkeys because this type of genetic variation in the serotonin transporter gene is only present in humans, apes and monkeys, and not rodents. Moreover, the marmoset’s brain shares many similarities with the human brain, so using monkeys in research allows us to identify exactly which mechanisms are behind conditions such as anxiety and depression, helping inform the development of much needed new treatments.

The research was funded by the Medical Research Council.

Reference

Insula serotonin 2A receptor binding and gene expression contribute to serotonin transporter polymorphism anxious phenotype in primates. PNAS; 1 July 2019; DOI: 10.1073/pnas.1902087116

Media Contact
Craig Brierley
[email protected]
http://dx.doi.org/10.1073/pnas.1902087116

Tags: BiologyGeneticsMental HealthneurobiologyStress/Anxiety
Share12Tweet7Share2ShareShareShare1

Related Posts

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025
blank

Endophytic Microbes in Garlic Enhance Plant Growth

October 25, 2025

Comparing Gene Regulation in Agrobacterium-Transformed Hypericum

October 25, 2025

Investigating Infectious Bursal Disease in Backyard Chickens

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    190 shares
    Share 76 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Toxicity Study of Minquartia Guianensis Leaf Extract

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

Survey Evaluates Clinician and Organization Goals in Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.