• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Genes that increase children’s risk of blood infection identified

Bioengineer.org by Bioengineer.org
January 29, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.

Bacteraemia, bacterial infection of the bloodstream, is a major cause of illness and death in sub-Saharan Africa but little is known about whether human genetics play a part. The leading bacterial cause of death in young children worldwide is Streptococcus pneumoniae (pneumococcus), and 14.5 million episodes of serious pneumococcal disease occur in young children annually.

A global network of researchers, coordinated from the Wellcome Trust Centre for Human Genetics in Oxford, therefore carried out a genome-wide association study to identify which genes might be associated with an increased likelihood of developing bacteraemia.

Dr Anna Rautanen from the Wellcome Trust Centre for Human Genetics at Oxford, said: 'A key question is why only a proportion of individuals develop invasive disease despite widespread exposure and asymptomatic carriage of bacteria. We know that genetic differences contribute to individuals' chances of developing more serious disease. However, the relevant genes for bacteraemia susceptibility remain largely unknown.'

The study looked at DNA samples from more than 4,500 Kenyan children from the Kilifi area, where Oxford and the Welcome Trust have a joint research centre with the Kenya Medical Research Institute, and where there is a high occurrence of bacteraemia. Just over 4000 children were healthy, while slightly more than 500 had pneumococcal bacteraemia.

The study found an area of two long intergenic noncoding RNA (lincRNA) genes that was associated with susceptibility to pneumococcal bacteraemia. LincRNAs are RNA transcripts that are longer than 200 nucleotides but are not translated into proteins. LincRNAs are still little understood, although it is believed that the human genome has more than 10,000 of them.

Dr Rautanen said: 'One of the associated lincRNA genes, called AC011288.2, is expressed only in neutrophils, cells that are known to have a key role in clearing pneumococcal disease. Although the role of lincRNAs in human infections is unknown, recent mouse studies have indicated that some lincRNAs can act in immune cells to regulate an individual's susceptibility to bacterial and viral infections.

'The genetic variants we identified are found only in African populations. This is one of only a few large scale genetic studies carried out in Africa, and the results show why such studies must be carried out in diverse populations.

'Critically, the genetic variants we have identified carry a doubled risk of developing bacteraemia when infected with the Streptococcus pneumoniae bacteria. This discovery therefore provides clues in the pressing search for new ways to target the disease.'

###

The paper, Polymorphism in a lincRNA associates with a doubled risk of pneumococcal bacteremia in Kenyan children, is published in the American Journal of Human Genetics.

For more information or to request the paper or an interview, please contact Stuart Gillespie in the University of Oxford news office on 44-1865-83877 or [email protected]

Media Contact

University of Oxford news office
[email protected]
44-186-528-3877
@UniofOxford

http://www.ox.ac.uk/

Share12Tweet7Share2ShareShareShare1

Related Posts

Participant Insights from the Navigate-Kidney Study on Kidney Failure Care Intervention

Participant Insights from the Navigate-Kidney Study on Kidney Failure Care Intervention

November 8, 2025

Global Prevalence of Chronic Kidney Disease More Than Doubles Since 1990, Impacting Nearly 800 Million People

November 8, 2025

Chronic Kidney Disease Rises to Ninth Leading Cause of Death, New Data Reveals

November 8, 2025

New App Assesses Impaired Vigilance Through Digital Tools

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Participant Insights from the Navigate-Kidney Study on Kidney Failure Care Intervention

Global Prevalence of Chronic Kidney Disease More Than Doubles Since 1990, Impacting Nearly 800 Million People

Chronic Kidney Disease Rises to Ninth Leading Cause of Death, New Data Reveals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.