• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Genes in albino orchids may hold clue to mechanism for non-photosynthetic parasites

Bioengineer by Bioengineer
February 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kobe University

How do plants give up photosynthesis and become parasites? A research team in Japan are using comprehensive analysis of gene expression in albino and green orchids to investigate the evolution of parasitic plants.

The research was carried out by Project Associate Professor SUETSUGU Kenji (Kobe University Graduate School of Science), Associate Professor KAMINAKA Hironori and Research Fellow MIURA Chihiro (Tottori University Faculty of Agriculture), Associate Professor YAMATO Masahide (Chiba University Faculty of Education), and Special Associate Professor SHIGENOBU Shuji (National Institute for Basic Biology).

Spontaneous mutation resulting in loss of chlorophyll is a phenomenon seen among many plant species. In normal plant species, albino mutations that lack chlorophyll wither after using up the nutrients stored in their seeds, but albinos of semi-parasitic species can continue to grow and even produce flowers. These albino plants, lacking chlorophyll, become totally dependent on fungi for their survival.

Plants that have abandoned photosynthesis and feed off the roots of mushrooms and other fungi are known as mycoheterotrophs. Most mycoheterotrophs are a long way genetically from even their closest autotrophic plants. In addition to the evolutionary adaptation that enabled their parasitic lifestyle, they have various other mutations, making it hard to pinpoint which gene group helped them to gain their parasitic abilities (see figure 1).

This study focused on the orchid species Epipactis helleborine. Although this species has developed green leaves and at first glance appears to be able to survive from photosynthesis alone, it is semi-dependent on fungi for carbon. Semi-mycoheterotrophic species such as E. helleborine occasionally undergo spontaneous mutations into albino varieties, totally losing their chlorophyll (see figure 2). The green individuals and the albino individuals have almost identical genome sequences, making them ideal candidates for genetic analysis of mycoheterotrophy (see figure 3). Because albino individuals lack chlorophyll, they are thought to depend more on their parasitic abilities than green individuals. This study investigated the possibility that the genes expressing more in albino varieties are related to mycoheterotrophy (parasitism of fungi). The research team focused on these highly-expressing gene groups.

The group carried out transcriptome analysis using RNA extracted from the roots of 3 green individuals and 3 albino individuals of the E. helleborine. The results showed that the gene group linked to mycorrhizal symbiosis in arbuscular mycorrhizal plants and autotrophic orchids is also highly expressed in albino individuals of E. helleborine. Additionally, the expression patterns from multiple genetic groups related to plant hormone biosynthesis showed similarities between albino individuals and plants associated with arbuscular mycorrhizal fungi. These results suggest that mycoheterotrophs may incorporate fungi by using a similar mechanism to those found in other types of mycorrhizal symbiosis. Until now, botanists believed that mycorrhizal symbiosis in mycoheterotrophs used a different mechanism from other types of mycorrhizal symbiosis because of the dramatic partner shift in mycorrhizal fungi. However, this research suggests they may have more mechanisms in common than previously imagined. The findings were published on January 19 in the online edition of Molecular Ecology.

###

Mycoheterotrophic plants:

Species which have lost the ability to photosynthesize and take their nutrients from fungi. Approximately 50 of these species have been reported in Japan, including families such as Ericaceae, Polygalaceae, Gentianaceae, Burmanniaceae, Corsiaceae, Thismiaceae, Orchidaceae, Petrosaviaceae and Triuridaceae.

Media Contact

Eleanor Wyllie
[email protected]
@KobeU_Global

http://www.kobe-u.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

NIH Launches Initiative to Develop Childhood HIV Vaccine

September 18, 2025
blank

On-Chip Cavities Harness Topological Edge States

September 18, 2025

AI and X-Ray Simplify Achalasia Diagnosis

September 18, 2025

JNK Kinase Controls HCoV-229E Nucleocapsid Phosphorylation

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NIH Launches Initiative to Develop Childhood HIV Vaccine

On-Chip Cavities Harness Topological Edge States

AI and X-Ray Simplify Achalasia Diagnosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.