• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Gene transcription machinery constrains DNA movements, study suggests

Bioengineer by Bioengineer
March 1, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Nagashima et al., 2019

Researchers in Japan have discovered that the DNA inside human cells moves around less when its genes are active. The study, which will be published March 1 in the Journal of Cell Biology, suggests that RNA polymerase II (RNAPII)–the key enzyme required to produce messenger RNA molecules from active genes–restricts the movement of DNA by organizing it into a network of interconnected domains.

To fit inside the nucleus of the cell, DNA is organized into chromatin, in which the strands of DNA are wrapped around groups of histone proteins, like thread around a spool, to form structures known as nucleosomes. Nucleosomes can then be folded up into even more compact structures. When a gene is activated, however, its chromatin is thought to open up and, at the same time, become more mobile and dynamic, so that RNAPII can transcribe the gene into messenger RNAs.

Kazuhiro Maeshima and colleagues at the National Institute of Genetics in Mishima, Japan, were therefore surprised when they discovered that the chromatin in human cells becomes more mobile when RNAPII and gene transcription are inhibited.

Maeshima’s group used a high-resolution microscopy technique that allowed them to track the movements of individual nucleosomes inside living cells. When the researchers depleted RNAPII from cells, or added drugs that inhibit the enzyme, nucleosomes in the genome clearly became more dynamic, suggesting that RNAPII usually restricts global chromatin movements.

RNAPII and gene transcription activity are naturally reduced when cells enter a dormant state called quiescence or when their DNA is damaged by ultraviolet light. Accordingly, Maeshima and colleagues saw that chromatin was more dynamic in quiescent or UV-irradiated cells. The researchers speculate that these increased movements may help chromatin recruit factors required to repair DNA or restart gene transcription when quiescent cells are reactivated.

But how does gene transcription affect the global mobility of chromatin when, at any given moment, RNAPII is only transcribing a small fraction of the genome? Based on computer simulations, Maeshima and colleagues propose that clusters of RNAPII and associated factors can bind and connect distant chromatin regions, linking them together in an organized network. These connections are lost when RNAPII is inactivated, breaking up the network and allowing chromatin to become more mobile.

“Our imaging and computational modeling results suggest that chromatin is globally stabilized by loose connections through transcriptionally active RNAPII,” Maeshima says. “Our model is compatible with the classical idea of stable transcription factories containing RNAPII, as well as with recent reports that RNAPII and other factors undergo a phase separation process to form dynamic clusters within the nucleus.”

###

 

Nagashima et al., 2019. J. Cell Biol. http://jcb.rupress.org/cgi/doi/10.1083/jcb.201811090?PR

About the Journal of Cell Biology

The

Journal of Cell Biology (JCB) features peer-reviewed research on all aspects of cellular structure and function. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JCB makes all of its content free online no later than six months after publication. Established in 1955, JCB is published by The Rockefeller University Press. For more information, visit jcb.org. 

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JCB on Twitter at @JCellBiol and @RockUPress.

 

Media Contact
Ben Short
[email protected]

Related Journal Article

http://dx.doi.org/10.1083/jcb.201811090

Tags: BiologyCell BiologyGenesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

August 15, 2025
Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

August 15, 2025

New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

August 15, 2025

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Fetal MRI Insights in Conjoined Twins

Harnessing Bacteria to Deliver Viruses Directly into Tumors

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.