• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Gene amplification — the fast track to infection

Bioengineer.org by Bioengineer.org
January 28, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Researchers at Umeå University in Sweden are first to discover that bacteria can multiply disease-inducing genes which are needed to rapidly cause infection. The results were published in Science on June 30, 2016.

More than 22 years ago, researchers at Umeå University were first to discover an infection strategy of human pathogenic Yersinia bacteria — a protein structure in bacterial cell-walls that resembled a syringe. The structure, named "Type III secretion system" or T3SS, makes it possible to transfer bacterial proteins into the host cell and destroy its metabolism.

After the discovery, researchers have found T3SS in several other bacteria species and T3SS has proven to be a common infection mechanism that pathogens, i.e. an infectious agent such as a virus or bacterium, use to destroy host cells. Now, Umeå researchers are again first to find a link between infection and rapid production of the essential proteins needed to form "the poisonous syringe".

Together with researchers at the Helmholtz Centre for Infection Research in Braunschweig, Germany, the Umeå researchers investigated the virulence strategy of Yersinia pseudotuberculosis. This bacterium can cause acute diarrhoea, vomiting and stomach pains, and is closely related to the deadly plague bacterium, which it shares many infection mechanisms with. The genes that these bacteria need for infection are located on a circular extra chromosome, called the virulence plasmid.

Researchers at Umeå Centre for Microbial Research (UCMR), The Laboratory for Molecular Infection Medicine Sweden (MIMS) at the Department of Molecular Biology first performed infection experiments in cell cultures with human cells and then confirmed their findings using animal models. It turned out that a single copy of the virulence plasmid was not sufficient to induce infection, but the researchers discovered that when Yersinia came in contact with host cells, it triggered a "copying machine" that increased the number of plasmids.

"Yersinia has developed a very clever strategy," says postdoctoral fellow Helen Wang who carried out a large portion of the experiments. "To carry a great number of plasmids, the bacteria need a lot of energy and it negatively affects the bacteria's metabolism and growth. But having one copy of the plasmid as a blueprint that can be rapidly amplified in case of infection is a very clever solution. Many copies of the plasmids give bacteria the opportunity to build up many T3SS and all the proteins needed to quickly knock out host cells during an infection," continues Helen Wang.

It is the first time researchers can demonstrate that an increased number of plasmid-encoded genes is necessary for successful infection by pathogenic bacteria.

"Our study represents a breakthrough in which we show that gene-dosage of plasmid-encoded genes is a fast regulatory strategy used by bacteria. This discovery will contribute to increased insights into bacterial resistance to antibiotics, and is a major step forward in our understanding of how bacteria cause disease," says Tomas Edgren, who together with Hans Wolf-Watz, led the study.

###

Media Contact

Anna Lawrence
[email protected]
46-725-522-918
@UmeaUniversity

http://www.umu.se/umu/index_eng.html

Share15Tweet7Share2ShareShareShare1

Related Posts

Unveiling Cacna1e Splice Variants’ Functional Diversity

September 28, 2025

Tetraspanins: Key Players in Organ Fibrosis Therapy

September 28, 2025

Specialized Singing Programs Enhance Symptoms and Quality of Life for Individuals with Lung Disease

September 28, 2025

At-Home Monitoring Reduces Hospitalization Rates for Children with Asthma by 50%

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Cacna1e Splice Variants’ Functional Diversity

Tetraspanins: Key Players in Organ Fibrosis Therapy

Specialized Singing Programs Enhance Symptoms and Quality of Life for Individuals with Lung Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.