• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ganoderic acid increases radiosensitivity of cancer cell

Bioengineer by Bioengineer
June 1, 2021
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SHAO Changsheng

Recently, the research team led by Prof. KONG Lingtao from Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS) prepared a highly active single iron atom catalyst (Fe-ISAs@CN) which can activate H2O2 to generate free radicals, achieving rapid removal of sulfadiazine pollutants in aqueous. The relevant results were published in Journal of Colloid and Interface Science.

Sulfadiazine (SDZ), a kind of synthetic sulfadiazine antibiotic, is widely used in clinical and animal husbandry industries. However, due to its large-scale use and unqualified discharge of wastewater, more and more antibiotic residues are detected in the water environment. These antibiotics are still highly toxic at very low concentrations. Due to the stable chemical structure of sulfadiazine, it is difficult to solve the residual problem with conventional processing technology.

In this research, researchers synthesized the Fe(acac)3@ZIF8 precursor using a solvothermal method, and then calcined at a high temperature of 930? to prepare a dodecahedral Fe-ISAs@CN catalyst with uniform morphology and good dispersion. Its rough surface and hollow structure provide a large specific surface area and expose a large number of adsorption sites.

The results of degradation experiments showed that 0.1g/L Fe-ISAs@CN could remove 91% of 20 mg/L SDZ within 60 minutes under acid pH conditions.

“We looked into the mechanism, and found those active sites could rapidly activate H2O2 in a short time,” said YANG Wu, leading scientist of the research, “It produced a large number of active substances with stronger oxidizing energy, and the adsorption site could adsorb SDZ to assist the degradation process.”

The result proved the rapid degradation of sulfadiazine in the restricted range. Combined with the LC-MS data, they proposed the possible degradation pathways. After five cycles, the removal rate of sulfadiazine was still greater than 80%, and the loss of iron in the catalyst was rather small, indicating good stability of the material.

This work breaks through the traditional Fenton’s stringent pH restrictions and provides new ideas for the rapid and deep removal of micro-pollutants in water by nanomaterials.

###

Media Contact
ZHAO Weiwei
[email protected]

Original Source

http://english.hf.cas.cn/new/news/rn/202105/t20210520_270034.html

Related Journal Article

http://dx.doi.org/10.1093/toxres/tfab030

Tags: BiochemistryBiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Key Genes Drive Organic Acid Accumulation in Cherry

Key Genes Drive Organic Acid Accumulation in Cherry

August 25, 2025
blank

Introducing a Breakthrough Tool to Monitor Infant Development Beginning at Just 16 Days Old

August 25, 2025

Genetic Diversity in Nile Tilapia: A Conservation Review

August 25, 2025

Flamingos Unlock the Secret to Longevity, New Study Finds

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    145 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fenofibrate’s Effects on Diabetic Retinopathy Explored

Link Between Hypothyroidism and Fatty Liver Disease Explored

Common Cold Could Offer Protection Against COVID-19, Finds National Jewish Health Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.