• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gaining unknown insights

Bioengineer by Bioengineer
October 31, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When bones break more easily in old age, osteoporosis is often to blame. However, the cause of the disease and how it develops is not yet sufficiently understood. An interdisciplinary team of scientists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Helmholtz Zentrum für Materialien und Energie in Berlin (HZB) is now developing a new imaging process to solve this problem and facilitate successful treatment more quickly. The aim of the new process is to enable x-ray microscopy to be carried out on living subjects. The European Research Council (ERC) is funding the project with an ERC Synergy Grant worth 12.3 million euros.

With life expectancy on the rise throughout the world, there has been a corresponding rise in the number of patients who suffer from osteoporosis. 27 million people suffer from the disease in Europe alone. The bone condition significantly reduces patients' quality of life and leads to high social costs. To improve treatment success, methods are required to analyse the changes to bone structure over time in more detail, especially on patients themselves. However, methods such as these have not been available before now, and certainly not any suited to being used for authoritative statistical studies on a large scale.

Research in several different dimensions

FAU researchers Prof. Dr. Georg Schett, Director of the Department of Medicine 3, Universitätsklinikum Erlangen, Prof. Dr. Andreas Maier from the Department of Computer Science 5 at FAU, and Prof. Dr. Silke Christiansen from the HZB are aiming to change this situation. 'We are seeking to revolutionise current knowledge about osteoporosis. To do so, we must improve our understanding of bone structure and anatomy', says Prof. Schett. The researchers plan to examine bones in detail at various macro and nano scales and observe how the structure changes over time under stress and after taking medication. The latter is only possible on a living individual. They are planning to develop a fast-scanning, low-dose X-ray microscope. The team will modify the hardware and software of an existing microscope from Carl Zeiss Microscopy by integrating a new high-performance X-ray source, an ultra-fast read-out detector and the latest machine learning methods for data evaluation.

'This will make it possible to assess the effects of ageing, hormone status, inflammation processes, medication or other forms of therapy on bones', says Prof. Schett. This method can also be used in applications other than medical research. It enables dynamic processes such as corrosion processes and microfractures to be monitored and documented in natural and synthetic materials. The project, known as 4D+nanoSCOPE, is set to receive funding worth a total of 12.3 million euros from the ERC over the next six years.

###

Media Contact

FAU Press Office
[email protected]
49-913-185-70229
@FAU_Germany

http://www.uni-erlangen.de

https://www.fau.eu/2018/10/26/news/research/eu-funding-for-developing-a-new-type-of-x-ray-microscope/

Share12Tweet8Share2ShareShareShare2

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.