• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

G-quadruplex regulates breast cancer-associated gene

Bioengineer by Bioengineer
December 21, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Baylor College of Medicine

For breast cancer, carrying protein CD44s, instead of CD44v, has a survival advantage. Researchers have now discovered a mechanism by which cells can regulate switching between the two proteins, opening options for the development of novel therapeutic strategies to control cancer growth in the future. The study appears in the journal Genes & Development.

"In previous studies, we found that switching from CD44v to CD44s is critical for breast cancer progression and metastasis," said corresponding author Dr. Chonghui Cheng, associate professor of molecular and human genetics and of molecular and cellular biology at Baylor College of Medicine. "Here, we studied how cells regulate the switching between the two proteins at the molecular level."

To build CD44 proteins, the genetic information on the DNA is transcribed into RNA and then translated from RNA into a protein. Cells have the choice of translating the information into protein CD44v or CD44s. Breast cancer cells that translate the RNA into protein CD44s have a survival advantage. The mechanism that mediates which protein is produced is called alternative splicing.

"How cancer cells regulate alternative splicing is becoming a fascinating subject of research," said Cheng, who also is at the Lester and Sue Smith Breast Center, part of the National Cancer Institute-designated Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. "The consensus is that decisions on which protein should be made rely on specific linear RNA sequences called G-tracts. But emerging evidence suggests that these decisions may also depend on the three-dimensional structure of folded linear RNA G-tracts. One example of these three-dimensional structures is G-quadruplex."

G-quadruplex largely regulates switching between CD44v and CD44s contribute

Working with human cells in culture, the researchers asked whether and how G-quadruplex was important for switching between CD44v and CD44s.

"We carried out very defined molecular and biochemical analyses and provided extensive data that show that G-quadruplex largely regulates the switching between CD44v and CD44s," said co-first author Dr. Jing Zhang, postdoctoral associate in the Cheng lab, whose key contributions were decisive in accomplishing this work. "G-quadruplex structures also are associated with degenerative diseases and aging. If we understand G-quadruplex better, we could be able to provide new insights into how to treat metastatic breast cancer and neurodegenerative diseases and better understand the aging process."

"What has been missing is an appreciation for the role played by folded linear RNA structures such as G-quadruplex in alternative splicing," Cheng said. "If we only look at one-dimensional, linear G-tracts, we might not be able to figure out how splicing is regulated because the key element could be residing within the three-dimensional structure of G-quadruplex, which is the case in this study."

###

Other contributors to this work include Huilin Huang, Samuel Harvey and Xiaohui Hu. The authors are affiliated with Baylor College of Medicine and/or Northwestern University Feinberg School of Medicine, Chicago.

Financial support was provided by the National Institutes of Health grants R01GM110146, R01CA182467, and F30CA196118, and the Cancer Prevention Research Institute of Texas (RR160009).

Media Contact

Dana Benson
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

Original Source

https://www.bcm.edu/news http://dx.doi.org/10.1101/gad.305862.117

Share12Tweet7Share2ShareShareShare1

Related Posts

Meteorological Factors, Obesity Linked to Pediatric Asthma

Meteorological Factors, Obesity Linked to Pediatric Asthma

October 14, 2025

Chamuangone Extract Blocks Breast Cancer Lung Metastasis

October 14, 2025

Evaluating CBCT for Class III Treatment Reliability

October 14, 2025

Emblica officinalis Extract Shows Anti-Glioblastoma Effects In Vitro

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1237 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Meteorological Factors, Obesity Linked to Pediatric Asthma

Chamuangone Extract Blocks Breast Cancer Lung Metastasis

Evaluating CBCT for Class III Treatment Reliability

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.