• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Funding for first system to monitor the hidden dangers of ships’ ballast

Bioengineer by Bioengineer
August 3, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

International shipping is vital to global trade, delivering 90 per cent worldwide. It is estimated that between five to 10 billion tonnes of ships' ballast water is moved around the world globally – ballast water which has become inadvertent transport for invasive non-native species, harmful pathogens and antibacterial resistance.

A research team from Applied Genomics Limited, the Sir Alister Hardy Foundation for Ocean Science, the Benthic Solutions Ltd and the University of Plymouth have secured funding from Innovate UK to develop the first early detection system to locate invasive non-native species and other harmful components of ships' ballast water.

The basis of the system is a proactive approach to mitigating the threats posed by harmful organisms in ballast water, combining surveillance of the water and risk-based monitoring of local native biodiversity. Together the information acquired can be used to manage potential threats to human health and the environment.

The driving force behind the research is the imminent implementation of the International Maritime Organisation's Ballast Water Management Regulations introduced this year, and an increasing awareness of the threats posed by the maritime transmission of invasive non-native species and microbial pathogens. Both have made the need for new approaches to monitor the contents of ballast water and their ecological impact even more critical.

After habitat loss, invasive non-native species are the second-greatest threat to biodiversity worldwide. The direct cost of marine invasive non-native species is estimated to be £40 million a year in the UK alone and more than €93 million across the EU. The impact of ballast water-borne pathogens to human health and local economies is immeasurable, both economically and socially.

Sebastian Mynott, Chief Operating Officer and Principal Molecular Ecologist at Applied Genomics Limited, commented: "We have put together the first monitoring system to deliver an evidence-based solution to monitoring ships' ballast water to support domestic and international non-native species regulations. Most importantly, it is a system which delivers effective enforcement for managing introduced non-native species and limiting their spread. We are grateful to Innovate UK for this funding which will allow us to bring this system to markets where it is needed."

Dr Mathew Upton, Associate Professor in Medical Microbiology at the University of Plymouth, added: "Greater international interconnectivity is good for global trade but it is the unwitting distribution method for not just non-native species, but also potentially deadly pathogens and antibiotic resistance. This new monitoring techniques we plan to develop will provide tools needed to better understand the impact of global ballast water movement on spread of drug resistant pathogens to mitigate the spread of unwanted organisms through ships' ballast water, and give maritime and local authorities the information they need to avoid or curtail potential invasion."

###

Media Contact

Andrew Gould
[email protected]
@PlymUni

http://www.plymouth.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Resistant Starch Boosts Gut Health in Ready Meals

Resistant Starch Boosts Gut Health in Ready Meals

August 26, 2025
Post-Disbudding Pain Alters Calves’ Play Behavior

Post-Disbudding Pain Alters Calves’ Play Behavior

August 26, 2025

Boosting Fertility in Low-Fertility Rats by Adjusting Treatment Intervals

August 26, 2025

Study Finds Two-Thirds of Women of Reproductive Age Have Modifiable Risk Factors for Birth Defects

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    146 shares
    Share 58 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Lithium-Ion Battery Cathodes via Zn-Doped LiFePO4

Disparities in Medicare Advantage vs. Traditional Medicare Care

Cyclin-Dependent Kinase 4/6 Inhibitors Boost Immunotherapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.