• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Fundamental solid state phenomenon unraveled

Bioengineer by Bioengineer
December 16, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Ulrich Tutsch

Whether water freezes to ice, iron is demagnetized or a material becomes superconducting – for physicists there is always a phase transition behind it. They endeavour to understand these different phenomena by searching for universal properties. Researchers at Goethe University Frankfurt and Technische Universität Dresden have now made a pioneering discovery during their study of a phase transition from an electrical conductor to an insulator (Mott metal-insulator transition).

According to Sir Nevill Francis Mott's prediction in 1937, the mutual repulsion of charged electrons, which are responsible for carrying electrical current, can cause a metal-insulator transition. Yet, contrary to common textbook opinion, according to which the phase transition is determined solely by the electrons, it is the interaction of the electrons with the atomic lattice of the solid which is the determinant factor. The researchers have reported this in the latest issue of the Science Advances journal.

The research group, led by Professor Michael Lang of the Physics Institute at Goethe University Frankfurt, succeeded in making the discovery with the help of a homemade apparatus which is unique worldwide. It allows the measurement of length changes at low temperatures under variable external pressure with extremely high resolution. In this way, it was possible to prove experimentally for the first time that it is not just the electrons which play a significant role in the phase transition but also the atomic lattice – the solid's scaffold.

"These experimental results will herald in a paradigm shift in our understanding of one of the key phenomena of current condensed matter research", says Professor Lang. The Mott metal-insulator transition is namely linked to unusual phenomena, such as high-temperature superconductivity in copper oxide-based materials. These offer tremendous potential for future technical applications.

The theoretical analysis of the experimental findings is based on the fundamental notion that the many particles in a system close to a phase transition not only interact with their immediate neighbours but also "communicate" over long distances with all other particles. As a consequence, only overarching aspects are important, such as the system's symmetry. The identification of such universal properties is thus the key to understanding phase transitions.

"These new insights open up a whole new perspective on the Mott metal-insulator transition and permit more sophisticated theoretical modelling of the phase transition", explains Dr. Markus Garst, Senior Lecturer at the Institute of Theoretical Physics of Technische Universität Dresden.

###

The research work was funded by the German Research Foundation in the framework of the Collaborative Research Centre/Transregio "Condensed Matter Systems with Variable Many-Body Interactions" led by Professor Michael Lang.

Media Contact

Dr. Michael Lang
[email protected]
@goetheuni

http://www.uni-frankfurt.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Engineered Prime Editors Minimize Genomic Errors

September 18, 2025

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

September 18, 2025

Groundbreaking Report Reveals Strategies to Address COVID-19’s Lasting Impact on Cardiovascular Health

September 18, 2025

QUT Researchers Develop Innovative Material to Convert Waste Heat into Sustainable Energy

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineered Prime Editors Minimize Genomic Errors

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

Groundbreaking Report Reveals Strategies to Address COVID-19’s Lasting Impact on Cardiovascular Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.