• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

FSU-led research team discovers unique supernova explosion

Bioengineer by Bioengineer
September 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy of Eric Hsiao.

One-hundred million light years away from Earth, an unusual supernova is exploding.

That exploding star — which is known as “supernova LSQ14fmg” — was the faraway object discovered by a 37-member international research team led by Florida State University Assistant Professor of Physics Eric Hsiao. Their research, which was published in the Astrophysical Journal, helped uncover the origins of the group of supernovae this star belongs to.

This supernova’s characteristics — it gets brighter extremely slowly, and it is also one of the brightest explosions in its class — are unlike any other.

“This was a truly unique and strange event, and our explanation for it is equally interesting,” said Hsiao, the paper’s lead author.

The exploding star is what is known as a Type Ia supernova, and more specifically, a member of the “super-Chandrasekhar” group.

Stars go through a sort of life cycle, and these supernovae are the exploding finale of some stars with low mass. They are so powerful that they shape the evolution of galaxies, and so bright that we can observe them from Earth even halfway across the observable universe.

An image of the “Blue Snowball” planetary nebula taken with the Florida State University Observatory. The supernova LSQ14fmg exploded in a system similar to this, with a central star losing a copious amount of mass through a stellar wind. When the mass loss abruptly stopped, it created a ring of material surrounding the star. Courtesy of Eric Hsiao

Type Ia supernovae were crucial tools for discovering what’s known as dark energy, which is the name given to the unknown energy that causes the current accelerated expansion of the universe. Despite their importance, astronomers knew little about the origins of these supernova explosions, other than that they are the thermonuclear explosions of white dwarf stars.

But the research team knew that the light from a Type Ia supernova rises and falls over the course of weeks, powered by the radioactive decay of nickel produced in the explosion. A supernova of that type would get brighter as the nickel becomes more exposed, then fainter as the supernova cools and the nickel decays to cobalt and to iron.

After collecting data with telescopes in Chile and Spain, the research team saw that the supernova was hitting some material surrounding it, which caused more light to be released along with the light from the decaying nickel. They also saw evidence that carbon monoxide was being produced. Those observations led to their conclusion — the supernova was exploding inside what had been an asymptotic giant branch (AGB) star on the way to becoming a planetary nebula.

“Seeing how the observation of this interesting event agrees with the theory is very exciting,” said Jing Lu, an FSU doctoral candidate and a co-author of the paper.

They theorized that the explosion was triggered by the merger of the core of the AGB star and another white dwarf star orbiting within it. The central star was losing a copious amount of mass through a stellar wind before the mass loss was turned off abruptly and created a ring of material surrounding the star. Soon after the supernova exploded, it impacted a ring of material often seen in planetary nebulae and produced the extra light and the slow brightening observed.

“This is the first strong observational proof that a Type Ia supernova can explode in a post-AGB or proto-planetary-nebula system and is an important step in understanding the origins of Type Ia supernovae,” Hsiao said. “These supernovae can be particularly troublesome because they can mix into the sample of normal supernovae used to study dark energy. This research gives us a better understanding of the possible origins of Type Ia supernovae and will help to improve future dark energy research.”

###

Other FSU researchers involved in this paper include Professor Peter Hoeflich, former postdoctoral fellow Chris Ashall, former doctoral candidate Scott Davis and doctoral candidates Sahana Kumar and Melissa Shahbandeh.

This work was part of the Carnegie Supernova Project II, a National Science Foundation-funded program to observe supernovae.

Media Contact
Bill Wellock
[email protected]

Original Source

https://news.fsu.edu/news/science-technology/2020/09/10/fsu-led-research-team-discovers-unique-supernova-explosion/

Related Journal Article

http://dx.doi.org/10.3847/1538-4357/abaf4c

Tags: AstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.