• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Frustrated fish give up thanks to glia, not just neurons

Bioengineer by Bioengineer
June 20, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ahrens Lab/Janelia Research Campus

Secured in place in a virtual-reality-equipped chamber, frustrated zebrafish just didn’t want to swim anymore.

They had been “swimming” along fine, until the virtual reality system removed visual feedback associated with movement. To the fish, it appeared as if they were drifting backward, regardless of how hard they stroked.

First, the fish thrashed harder. Then, they simply gave up, says neuroscientist Misha Ahrens, a group leader at the Howard Hughes Medical Institute’s Janelia Research Campus. “Giving up is a very important thing for animals to be able to do,” he says. Without the ability to stop a behavior that’s not working, animals would needlessly deplete their energy.

Ahrens and his team at Janelia wanted to identify the neurons responsible for the decision to quit. The researchers watched the zebrafish’s brain activity patterns as they struggled. But the clearest signal wasn’t coming from neurons. The cells that sprang into action just before the zebrafish called it quits were actually glia, long thought to play a supporting role in the brain.

The find, reported June 20, 2019, in the journal Cell, is clear evidence that cells other than neurons can perform computations that influence behavior – a discovery so surprising that the team took pains to verify their work, Ahrens says.

“We were excited and also very skeptical,” he says. “We challenged ourselves to try and disprove it.”

More than glue

Until about two decades ago, scientists thought glia (from the Greek for “glue”) just provided support and insulation for neurons. But recent research has begun to uncover new roles for glia in processing. Now, Ahrens, Janelia Research Scientist Yu Mu, and their colleagues – Davis Bennett, Mikail Rubinov and others – have shown that, in zebrafish, one type of glial cell can calculate when an effort is futile.

“The original hope was that we would find the neurons that drive this ‘giving-up’ behavior,” Ahrens says.

A whole-brain imaging technique previously developed at Janelia let the researchers look at all of a fish’s brain cells, both neurons and glia, while it tried to swim. Then, the team compared the different cells’ impact on behavior.

But surprisingly, the team had trouble identifying specific neurons that clearly impacted swimming behavior. Glia were a different story, Mu says. Certain glia, called radial astrocytes, amped up their activity in one part of the brain when the animals stopped trying to swim.

Neurons weren’t completely out of the loop: each time a movement attempt failed, certain neurons revved the astrocytes up, until at last they crossed a threshold and sent the quit command. That command went out to a different set of neurons, which then suppressed swimming.

“You could think of the astrocytes as a counter for how many swim bouts have failed,” says Mu. It’s not a simple job: To tell the fish when to give up, the glia must monitor movement attempts, note repeated failures, and then send the “quit” message to the body.

Control astrocytes, change behavior

To verify the astrocytes’ role, the researchers first used a laser to kill only the ones that consistently turned on when the fish gave up. In fact, the team found, fish who lacked those cells continued struggling to swim much longer than the fish whose astrocytes remained.

Next, the team created fish with astrocytes the team could control. Switch on the astrocytes, and the fish stop swimming, the team found, even when the visual environment wasn’t messing with them. While normal fish rarely pause, fish with overactive astrocytes spent over half their time languishing in defeat. Taken together, these experiments confirmed that radial astrocytes indeed control the decision to stop swimming, Ahrens says.

One next step for the group will be studying exactly how the astrocytes communicate with neurons. Astrocytes can, for example, release chemical messengers that affect neuron behavior, Mu says. “Astrocytes are like a swiss army knife.” Mu wants to identify which of their many tools they deploy to halt unproductive struggle.

###

Citation:

Yu Mu, Davis V. Bennett, Mikail Rubinov, Sujatha Narayan, Chao-Tsung Yang, Masashi Tanimoto, Brett D. Mensh, Loren L. Looger, and Misha B. Ahrens. “Radial astrocytes encode and suppress futile actions.” Cell. Published online June 20, 2019. doi: 10.1016/j.cell.2019.05.050

Media Contact
Meghan Rosen
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2019.05.050

Tags: BiologyCell BiologyMolecular BiologyneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Four Breakthrough Applications Propel TENG Technology into the Spotlight

Four Breakthrough Applications Propel TENG Technology into the Spotlight

August 22, 2025

Unraveling Cation-Coupled Mechanisms in Electrochemical CO2 Reduction Through Electrokinetic Analysis

August 22, 2025

New Study Reveals Hidden Turbulence in Polymer Fluids

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Finds Speed Isn’t Everything in Covalent Inhibitor Drug Development

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

Transformative Nodes Set to Revolutionize Quantum Network Technology

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.