• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fruit flies help to shed light on the evolution of metabolism

Bioengineer by Bioengineer
January 3, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Diet choice of animal species is highly variable. Some are specialists feeding only on one food source, such as a sugar-rich fruit or protein-rich meat. Other species, like humans, are generalists that can feed on different kinds of food sources.

Because of these differences, animal species ingest different amounts of macronutrients, like carbohydrates and amino acids. It is conceivable that the metabolism has to match the diet choice of each species. However, we understand poorly the evolution of animal metabolism – what are the underlying genetic changes and how these changes define the optimal nutrient composition for a given species.

The research group led by Associate Professor Ville Hietakangas at the University of Helsinki have studied the evolution of metabolism by using two very closely related fruit fly species.

The first one of them is a generalist, Drosophila simulans, which feeds on varying fruits and vegetables, which typically contain a high amount of sugars. The second one is Drosophila sechellia, which has specialized to feed on one fruit, Noni, Morinda citrifolia, which has low sugar content.

“We found pretty dramatic metabolic differences between these species. D. sechellia larvae, that are not exposed on sugar in nature, were not able to grow when placed on a sugar-rich diet, while D. simulans had no problems handling dietary sugar,” explains Hietakangas.

The close relatedness of the fruit fly species allowed the scientist interbreed the species, to make hybrids that were largely genetically like D. sechellia, but contained those genomic regions of D. simulans that were needed for sugar tolerance.

“The ability to analyze hybrid animals was the key advantage of our study. This way we could not only rely on correlating the findings but were able to identify genetic changes that were causally important. We also could tell that sugar tolerance comes with a cost. D. simulans and the sugar tolerant hybrids survived poorly on a low nutrient diet. This suggests that D. sechellia has evolved to survive on a low nutrient environment, which has required rewiring the metabolism in a way that has made feeding on high sugar impossible,” says Hietakangas.

This study opens up many interesting questions, also related to humans. In the future, it will be interesting to explore whether human populations that have different dietary histories, for example experiencing extremely limited nutrition for many generations, may respond differently to modern diets rich in sugars.

###

Media Contact
Ville Hietakangas
[email protected]

Related Journal Article

https://elifesciences.org/articles/40841
http://dx.doi.org/10.7554/eLife.40841

Tags: BioinformaticsBiologyCell BiologyEvolutionGeneticsMetabolism/Metabolic DiseasesNutrition/NutrientsPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring PDR Gene Family and miRNAs in Wheat

January 14, 2026
Genetic Insights into Circadian Adaptation in Endangered Fish

Genetic Insights into Circadian Adaptation in Endangered Fish

January 13, 2026

Blastocystis Boosts B and K2 Vitamins in Antelope Gut

January 13, 2026

New Intermediate Host Found for Fish Parasite

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring PDR Gene Family and miRNAs in Wheat

Aged Skin Worsens Osteoarthritis Through IL-36R

How Feedback Shapes Risk Attitudes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.