• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fruit flies farm their own probiotics

Bioengineer by Bioengineer
July 31, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Inês Pais and Rita Valente

The role of bacteria inhabiting our bodies is increasingly recognized as part of our wellbeing. It is in our intestines that the most diverse and significant bacteria community is located. It is believed that the manipulation of this community – named microbiota – can contribute to solve some diseases. However, to enable it, it is necessary to understand which are the bacteria and how they colonize the intestine. Research on this field has been using model organisms, namely mouse and fruit fly, which also benefit from this association with bacteria.

Now, a study published in the PLoS Biology offers a new tool to study this bacteria-host interaction. A research team from the Gulbenkian Institute of Science (IGC) revealed how the bacterial community colonizes the fruit flies kept in the lab or in the wild, and which may be the impact of this colonization in nature. Understanding these mechanisms of colonization may allow microbiota manipulation in insects responsible for agriculture pests or diseases vectors.

It was assumed, until recently, that the fruit fly (scientific name, Drosophila melanogaster) did not have a stable bacterial community in its intestine. Gut bacteria would need to be continuously ingested with food. A research team led by Ines Pais, researcher at Luis Teixeira's lab from IGC, showed now that fruit flies have a bacterial community much more stable than it was believed. But there are differences between flies kept in the laboratory and from the wild. Laboratory flies – globally used in research studies – are associated with bacteria not able to colonize the intestine. Instead, these bacteria grow in the flies' food and are constantly ingested by them. The IGC team discovered a very different situation related to wild flies, which exist in nature. They showed that bacteria associated to wild flies have a much higher colonization capability. Curiously, these wild flies' bacteria are able to colonize the intestines of flies kept in the lab. By focusing in one of these bacteria, the researchers showed that a stable and continuously colonization of the intestine causes a constant transfer of bacteria to the environment, benefiting the following generation.

"The fruit fly practices a kind of farming by transporting with them the bacteria that are sown in the local where the next generation will grow and feed. Doing so, the next generation of flies will obtain all the benefits related to these bacteria for their development and fertility", explains Ines Pais. "This interaction is also similar to what happens when human beings use yeast to bake bread, or bacteria to make yogurt", adds Luis Teixeira, principal investigator of the research group.

On why fruit flies were used to study the way that bacteria colonize the intestine, Luís Teixeira says: "The bacterial community in fruit flies is much smaller and simple than in mammals. Also, it is a relatively easy to produce fruit flies without any bacteria, which facilitates the study of colonization. Since similar biological mechanisms exist between the fruit fly and humans, we think that there are many lessons that we can learn with the fly". The researcher alerts also for the fact that many insects have a devastating role in agriculture or as diseases vectors. "Through the manipulation of their microbiota it might be possible to control these insects or their capability to transmit diseases, as for example Dengue virus and malaria parasites", says Luís Teixeira.

This study was conducted at the Gulbenkian Institute of Science and funded by Fundação para a Ciência e Tecnologia, University of Gdansk and European Union, and FEDER.

The bacteria in our body

We all live in permanent contact with a huge community of microorganisms, such as bacteria, virus, and fungus. We have different communities on our body's surface and mucous. The biggest and most diverse bacteria community in terms of bacteria species is placed in the intestine. In normal conditions, the microbiota is in balance, providing benefits to the host organism. Our bacteria promote the correct development of our body, the break down of nutrients and protect our body against some pathogens, which can, for example, cause intestine infections. However, when this balance is disturbed (for example, by using antibiotics), the microbiota species may change. The organism passes through a dysbiosis condition, in which this community, instead of beneficial, may become harmful to our health.

###

* Pais, I.S., Valente, R.S., Sporniak, M., Teixeira, L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 2018 Jul 5;16(7):e2005710. https://doi.org/10.1371/journal.pbio.2005710

Media Contact

Ana Mena
[email protected]
351-214-407-959
@IGCiencia

http://www.igc.gulbenkian.pt

Original Source

http://www.igc.gulbenkian.pt/pages/article.php/A=428___collection=pressReleases___year=2018 http://dx.doi.org/10.1371/journal.pbio.2005710

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Vibrating Molecules Could Unlock New Insights in Cell Biology

October 16, 2025
blank

Dr. Ilana Kolodkin-Gal of the Shojen Institute for Synthetic Biology Awarded Prestigious BSF-NSF Research Grant

October 16, 2025

What Occurs When a Cell’s Antenna Fails?

October 16, 2025

Puppies Born to Older Fathers Exhibit Higher Rates of Gene Mutations

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1252 shares
    Share 500 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KAIST Creates AI Technology to Predict and Assemble Cellular Drug Responses Like LEGO Blocks

Olanzapine’s Impact on Young Anorexia Nervosa Patients

How Vibrating Molecules Could Unlock New Insights in Cell Biology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.