• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

From theory to reality: The creation of metallic hydrogen

Bioengineer by Bioengineer
January 26, 2017
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: R. Dias and I.F. Silvera

For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon. Theoretically, metallic hydrogen will have many qualities important in the realm of physics, including high temperature superconductivity and superfluidity, which could hold valuable implications for solving energy problems. In 1935, two scientists – E. Wigner and H. B. Huntington – predicted that molecular hydrogen would become an atomic metal at 25 gigapascals (GPa) pressure. While recognizing some of Wigner and Huntington's assumptions were incorrect, compressing hydrogen into a metal has proven a surprising challenge. Ranga Dias and Isaac F. Silvera have finally metallized hydrogen between 465 and 495 GPa at 5.5 Kelvin, nearly 20 times higher pressure than initially predicted. Spectroscopic measurements coupled with a simple calculation require hydrogen to have dissociated from its standard molecular (H2) state into an atomic metal. The tiemans believe that the metallic phase is most likely solid, based on recent theory, but do not have experimental evidence to discriminate between the solid and liquid states. Nevertheless, this advancement represents an achievement more than 80 years in the making. "A looming challenge is to quench metallic hydrogen and if so study its temperature stability to see if there is a pathway for production in large quantities," the tiemans conclude.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Engaging Families in Advance Care Planning: A Study

October 6, 2025
N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

October 6, 2025

Designing Thiadiazole β-Carboline Derivatives as Glucosidase Inhibitors

October 6, 2025

Mycoplasma Pneumoniae Linked to Neuromyelitis Optica Case

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engaging Families in Advance Care Planning: A Study

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

Designing Thiadiazole β-Carboline Derivatives as Glucosidase Inhibitors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.