Helmholtz research centers start measurement campaign on hydrological extremes
Credit: Dr. Andreas Wieser, KIT
Extreme weather events, such as thunderstorms or heavy rainfall and the resulting floods, influence Earth and environmental systems in the long term. To holistically study the impacts of hydrological extremes – from precipitation to water entering the ground to discharge to flow into the ocean -, a measurement campaign at Müglitztal/Saxony is about to start under the MOSES Helmholtz Initiative. The measurement campaign is coordinated by Karlsruhe Institute of Technology (KIT).
A single heavy rainfall event may have serious impacts on an entire river system, ranging from land erosion by floods to nutrient and pollutant transports to changes of the ecosystem. The current MOSES measurement campaign studies hydrological extreme events from the source in the atmosphere to response of biosystems.
MOSES stands for “Modular Observation Solutions for Earth Systems.” Within this joint initiative, nine research centers of the Helmholtz Association set up mobile and modular observation systems to study the impacts of temporarily and spatially limited dynamic events, such as extreme precipitation and discharge events, on the long-term development of Earth and environmental systems. The current measurement campaign on hydrological extremes coordinated by KIT takes place from mid-May to mid-July 2019 at Müglitztal, Saxony. In this region located in the Eastern Erzgebirge (Ore Mountains), certain weather conditions may result in extreme precipitations and floods, an example being the flood of 2002. Such extreme events are triggered either by depressions which, together with blockage effects by mountains, cause high precipitation or by small-scale convective precipitation events, i.e. thunderstorms, that may be associated with floods in a limited area, i.e. a mountain valley.
Apart from the Troposphere Research Division of KIT’s Institute of Meteorology and Climate Research (IMK-TRO), the Helmholtz Centre for Environmental Research (UFZ) Leipzig, Forschungszentrum Jülich (FZJ), and the Helmholtz Centre Potsdam – German Research Centre for Geosciences (GFZ) are involved in the current measurement campaign with their measurement systems.
KIT will use its mobile KITcube observatory. Its supplies information on the formation and development of strong rainfall, precipitation distribution, and evaporation. Among others, a radar is applied to measure precipitation within a radius of 100 km, a microwave radiometer serves to determine the atmospheric temperature and humidity profiles, and a lidar system is used to measure the wind profile with the help of lasers. Radiosondes supply information on the state of the atmosphere up to 18 km height. A network of distrometers, i.e. systems for continuous monitoring of precipitation intensity and raindrop size, supplies additional information on processes in the observation area.
UFZ scientists will focus on soil humidity that is an important variable to control discharge of rainwater. If the soil is too humid or extremely dry, rainwater flows off the land surface and floods may develop more quickly. To optimally monitor the development of soil humidity, UFZ will install a mobile, wireless sensor network to measure soil humidity and temperature at variable depths. In contrast to classical systems, the sensor network allows precise adjustment of sensor positions and distribution as well as of scanning rates to local measurement conditions. Apart from the stationary sensor network, mobile cosmic ray rovers with specially developed neutron sensors will be applied. With them, researchers can observe large-scale variation of soil humidity in the Müglitz catchment area.
Scientists of Forschungszentrum Jülich will launch balloon probes up to 35 km height to determine, among others, how thunderstorms affect climate in the long term. Using water vapor, ozone, and cloud instruments, they study trace gas transport through thunderstorms into the upper troposphere – the bottom layer of the Earth’s atmosphere – or even into the stratosphere above.
GFZ researchers will use mobile measurement units to study the influence of stored water on the development of a flood. Apart from cosmic ray sensors to measure water in the upper soil and sensors to measure close-to-surface groundwater, they will also use so-called gravimeters. These systems detect variations of the Earth’s gravity due to changing underground water masses, also at larger depths.
###
The current measurement campaign is part of the activities of the MOSES team within the module “Hydrological Extremes” in the research field Earth and Environment of the Helmholtz Association.
Homepage of MOSES: https:/
Additional materials: https:/
More about the KIT Climate and Environment Center: http://www.
Press contact:
Dr. Martin Heidelberger
Press Officer
Tel.: +49 721 608-21169
EMail: [email protected]
Being „The Research University in the Helmholtz-Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,100 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.
This press release is available on the internet at
http://www.
Media Contact
Monika Landgraf
[email protected]
Original Source
https:/