• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

From liquid to solid to drive development

Bioengineer by Bioengineer
March 24, 2022
in Biology
Reading Time: 2 mins read
0
DrospphilaEmbryo_socialMedia
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The term ‘phase transition’ might initially conjure up images of ice melting or water vapour condensing on a cold glass. In biology, phase transition plays a role in processes such as lipid bilayer formation or the spontaneous de-mixing of protein droplets. In a recent paper published in Cell, the Ephrussi and Mahamid groups at EMBL Heidelberg have now shown how phase transitions in protein-RNA droplets can influence their biological function.

DrospphilaEmbryo_socialMedia

Credit: Isabel Romero Calvo / EMBL

The term ‘phase transition’ might initially conjure up images of ice melting or water vapour condensing on a cold glass. In biology, phase transition plays a role in processes such as lipid bilayer formation or the spontaneous de-mixing of protein droplets. In a recent paper published in Cell, the Ephrussi and Mahamid groups at EMBL Heidelberg have now shown how phase transitions in protein-RNA droplets can influence their biological function.

In order to regulate the many cellular functions within an organism, biochemical processes within individual cells must be precisely regulated in time and space. While organelles like the nucleus or the endoplasmic reticulum are enclosed by membranes and thereby physically separate certain reactions and processes from others, the cellular space also contains a different class of organelles without membranes, called condensates. Like their membrane-bound counterparts, condensates control specific functions within a cell.

In their latest study, the EMBL scientists focused on one specific mRNA, oskar, and its role in embryo development in the model organism Drosophila melanogaster (fruit fly). In the developing fruit fly egg, oskar mRNA must localise to a specific position within the cell to lay the foundation for the development of the future embryo. oskar mRNA is found in ribonucleoprotein (RNP) granules that contain proteins bound to the RNA. These are an example of membraneless condensates. What the EMBL researchers were now able to show is that these granules have solid-like properties in the developing fruit fly egg.

“Condensates are typically thought of as liquids. But we found that a solid state of oskar RNP granules is crucial for localisation and function of oskar mRNA,” explained Mainak Bose, postdoc in the Ephrussi and Mahamid groups, and first author of the study. “When we genetically engineered the granules in Drosophila oocytes to be liquid-like, it resulted in a multitude of defects in the developing embryos.”

These findings demonstrate the importance of the physical properties of condensates for their physiological functions, something that was until now believed to be governed by their biochemical properties alone. “Our work highlights how interactions and properties at the molecular level govern the biophysical properties and functions of condensates on the cellular and even organismal scale,” concluded Bose.



Journal

Cell

DOI

10.1016/j.cell.2022.02.022

Subject of Research

Cells

Article Title

Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development

Article Publication Date

23-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Ants vs. Bumblebees: A Battle with No Victors

Ants vs. Bumblebees: A Battle with No Victors

November 13, 2025
Mapping Guanidinoacetic Acid’s Tissue-Specific Effects in Cattle

Mapping Guanidinoacetic Acid’s Tissue-Specific Effects in Cattle

November 13, 2025

Phase 3 Study Confirms Strong Safety and Immunogenicity of EuTYPH-C Inj.® Multi-Dose

November 13, 2025

Iain Couzin Named a “Highly Cited Researcher” for 2025

November 12, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Cellular Protein FGD3 Enhances Effectiveness of Breast Cancer Chemotherapy and Immunotherapy

Groundbreaking High-Precision Measurement of Potential Dynamics Achieved in Reactor-Grade Fusion Plasma

Revolutionary Nanoplatforms Combine Ferroptosis and Immunotherapy: Innovative Engineering Tactics for Tumor Microenvironment Transformation and Enhanced Treatment Efficacy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.