• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

From guts to glory: The evolution of gut defense

Bioengineer by Bioengineer
August 24, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Keisuke Nakashima

A new Nature Communications paper has journeyed to the inside of our insides, as a team from the Okinawa Institute of Science and Technology Graduate University has mapped the evolutionary journey of how animal guts have evolved to defend themselves from microbial attack.

In mice and humans, the gut is lined with a layer of mucous – and it is assumed to be the same in other mammals. But this style of gut lining is a new development, evolutionarily speaking; most invertebrates protect their gut walls with a membrane made of chitin, which acts as a barrier to microbes and helps prevent infection. But until now, scientists were unsure about which came first, or if they are even related. But a team led by Dr. Keisuke Nakashima of OIST's Marine Genomics Unit were keen to find the answers.

Chitin is an abundant biological material that is produced by a wide variety of organisms. From crab shells to the cell walls of fungi, chitin is second only to cellulose when it comes to its commonplace existence. A versatile building material for nature, chitin is even found in the gut linings of invertebrates, where it acts as a defensive barrier against potentially harmful microbes.

But strangely, most vertebrates don't share this chitin-lined gut. Instead they protect themselves with a layer of mucous that bacteria are able to colonize but not penetrate. Dr. Nakashima's team noticed a group of animals that had both chitin and mucous coexisting in its gut: Tunicates.

Also known as sea squirts, tunicates are simple animals that live by filtering food particles from seawater. While they don't have a spine, they are closely related to the vertebrates, with a similar genomic background that make them ideal for studying their evolution. But it's the uniqueness of their gut lining that attracted the research team: "We noticed that tunicates seemed to have an intermediate kind of gut lining that could show that mammalian and invertebrate gut linings shared an evolutionary link," said Dr. Nakashima.

It wasn't only tunicates that had these transitional linings – other simple chordates like lancelets, jawless fish and some bony fish had an ability to produces chitin in their guts too – in fact the only group of vertebrates to have lost their chitin producing genes completely are mammals.

Working with a tunicate species, Ciona intestinalis Type A, the team looked at the surface of their rudimentary gut, which was largely composed of hair-like cilia behind a barrier of nanoscopic fibers made almost entirely of chitin. This mesh of chitin nanofibers is embedded in a surface matrix – which happens to have gel-forming mucin as a major component – which also happens to be a building block of the mucous layers found in the mammalian gut. After chemically preventing some tunicates from synthesizing chitin, the team noticed the tunicates died – but those that were treated with antibiotics were able to survive.

The experiment showed the chitin layer had an antimicrobial effect, preventing infection by physically blocking pathogenic bacteria and other harmful microbes from reaching the gut surface. But the presence of mucous in the same space was very similar to more complex vertebrates. It looked as if the tunicates were a kind of missing link between invertebrates like insects that have only chitin as a microbial defense, and mammals that use a mucous layer as a sort of decoy for microbes to colonize, leaving vulnerable cell walls to perform their vital functions unmolested.

Running several years' worth of comparative analyses on a variety of chordates, Dr. Nakashima's team was able to trace an evolutionary path from one model of gut to the other, cataloging intermediate gut structures that utilized varying quantities of chitin and mucous along the way. It's an unprecedented look into the evolution of one of the most critical body structures that is keeping us all safe from microbes to this very day.

###

Media Contact

Kaoru Natori
[email protected]
81-098-966-2389
@oistedu

http://www.oist.jp/

Original Source

https://www.oist.jp/news-center/press-releases/guts-glory-evolution-gut-defense http://dx.doi.org/10.1038/s41467-018-05884-0

Share12Tweet7Share2ShareShareShare1

Related Posts

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

September 17, 2025

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

September 17, 2025

Innovative AI Algorithm Leverages Mammograms to Precisely Predict Cardiovascular Risk in Women

September 17, 2025

Exercise Interventions Improve Hospitalized Dementia Patients’ Health

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

Recurring Cystitis Episodes Could Indicate Urogenital Cancers in Middle-Aged Adults

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.