• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

From disorder to order: flocking birds and “spinning” particles

Bioengineer by Bioengineer
April 26, 2024
in Chemistry
Reading Time: 3 mins read
0
A strange similarity between flocking birds and ferromagnetic order in particles
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers Kazuaki Takasan and Kyogo Kawaguchi of the University of Tokyo with Kyosuke Adachi of RIKEN, Japan’s largest comprehensive research institution, have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing. The findings were published in the journal Physical Review Research.

A strange similarity between flocking birds and ferromagnetic order in particles

Credit: Takasan et al 2024

Researchers Kazuaki Takasan and Kyogo Kawaguchi of the University of Tokyo with Kyosuke Adachi of RIKEN, Japan’s largest comprehensive research institution, have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing. The findings were published in the journal Physical Review Research.

Flocking birds, swarming bacteria, cellular flows. These are all examples of active matter, a state in which individual agents, such as birds, bacteria, or cells, self-organize. The agents change from a disordered to an ordered state in what is called a “phase transition.” As a result, they move together in an organized fashion without an external controller.

“Previous studies have shown that the concept of active matter can apply to a wide range of scales, from nanometers (biomolecules) to meters (animals),” says Takasan, the first author. “However, it has not been known whether the physics of active matter can be applied usefully in the quantum regime. We wanted to fill in that gap.”

To fill the gap, the researchers needed to demonstrate a possible mechanism that could induce and maintain an ordered state in a quantum system. It was a collaborative work between physics and biophysics. The researchers took inspiration from the phenomena of flocking birds because, due to the activity of each agent, the ordered state is more easily achieved than in other types of active matter. They created a theoretical model in which atoms were essentially mimicking the behavior of birds. In this model, when they increased the motility of the atoms, the repulsive forces between atoms rearranged them into an ordered state called ferromagnetism. In the ferromagnetic state, spins, the angular momentum of subatomic particles and nuclei, align in one direction, just like how flocking birds face the same direction while flying.

“It was surprising at first to find that the ordering can appear without elaborate interactions between the agents in the quantum model,” Takasan reflects on the finding. “It was different from what was expected based on biophysical models.”

The researcher took a multi-faceted approach to ensure their finding was not a fluke. Thankfully, the results of computer simulations, mean-field theory, a statistical theory of particles, and mathematical proofs based on linear algebra were all consistent. This strengthened the reliability of their finding, the first step in a new line of research.

“The extension of active matter to the quantum world has only recently begun, and many aspects are still open,” says Takasan. “We would like to further develop the theory of quantum active matter and reveal its universal properties.”



Journal

Physical Review Research

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Activity-induced ferromagnetism in one-dimensional quantum many-body systems

Article Publication Date

26-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025
blank

The Quantum Doorway Puzzle: Electrons Struggling to Find Their Exit

October 20, 2025

Advances in Perovskite Film Patterning Boost Photodetector Technology

October 20, 2025

Revealing the Causes of Battery Failure Using Graphene Mesosponges

October 20, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1267 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    300 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    128 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Test Advances Personalized Immunotherapy for Muscle-Invasive Bladder Cancer After Surgery

Unraveling Apolipoprotein A-IV in Cardiac Amyloidosis

Karel Svoboda and Jay Shendure Elected to National Academy of Medicine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.