• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Fresh insights help unlock mysteries of the first stages of life

Bioengineer by Bioengineer
October 3, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Key insights into how sperm and egg cells are formed have been discovered by scientists, shedding light on the earliest stages of their development.

The research shows for the first time how molecules influence the fate of the cells that define the DNA profile of future generations, experts say.

The findings focus on the development of germ cells – which give rise to sperm and eggs. During reproduction, these germ cells join with one from the opposite sex to form a new individual.

Research led by the University of Edinburgh carried out studies with mice to investigate the first stages of germ cell formation.

They focused on a molecule known as BMP4 and found that it blocks the activity of Otx2, a gene regulator that directs the development of non-germ cells, known as somatic cells.

The scientists showed that reducing Otx2 activity by BMP4 is crucial to the development of germ cells.

The study is published in Nature and was funded by the Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council.

Professor Ian Chambers from the University of Edinburgh's MRC Centre for Regenerative Medicine, who led the study, said: "Until now, studies of germ cell identity have focused on activity much later down the chain of events.

"We can now begin to see the early events occurring as cells commit to germ cell development. These exciting findings open the door towards a better understanding of the processes governing the very earliest stages in the separation of germ cells from all other cells."

###

Media Contact

Kate McAllister
[email protected]
01-316-506-357
@edinunimedia

http://www.ed.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.