• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

‘Frequency combs’ ID chemicals within the mid-infrared spectral region

Bioengineer by Bioengineer
March 15, 2018
in Health
Reading Time: 3 mins read
3
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: National Institute of Standards and Technology, Applied Physics Division, Quantum Nanophotonics group

WASHINGTON, D.C., March 15, 2018 — Chemical compounds all carry distinctive absorption "fingerprints" within the mid-infrared spectral region of 2 to 12 microns. This offers an opportunity to measure and study chemicals at extremely sensitive levels but researchers lack the tools, like lasers and detectors, needed to operate within the mid-infrared. Recently, there's been a push to develop new tools to help see and measure these chemical compounds in greater detail.

In a breakthrough, a group of researchers at the National Institute of Standards and Technology developed an on-silicon-chip laser source with outputs that consist of precisely defined and equally spaced optical lines within the mid-infrared spectral region. They report their findings in APL Photonics, from AIP Publishing.

These lasers, called frequency combs, "act as 'rulers' of light and have numerous applications — from transferring time standards and improving GPS signals to precision spectroscopy," said Nima Nader, a postdoctoral researcher for NIST.

For spectroscopic applications, this type of coherent light source can pass through a sample cell containing unknown gases. These gases absorb some of the light and leave behind fingerprints on very specific comb lines. Researchers can check these lines against a database of gases to identify the specific chemicals present.

Beyond this, the coherent nature of the laser source "enables long-distance propagation of light so chemical samples can be studied remotely, without direct contact," Nader said. "And since frequency combs are stabilized laser sources, they can detect very low levels of chemicals and enhance the sensitivity of our measurements."

These sources are fabricated on a compact, silicon-based integrated photonics platform, which enables hundreds of devices — in this case, frequency combs — to be fabricated on a single small-area die.

"Each device is engineered to generate a mid-infrared spectrum of comblike optical lines with tailored spectral shape, bandwidth, and optical power distribution," Nader said.

These laser sources are "as coherent and low-noise as conventional frequency combs developed prior to our work," Nader said. "We also reported, for the first time, dual-comb spectroscopy of a gas sample with a mid-infrared frequency comb source that exploits a silicon-photonic platform."

These developments improve conventional techniques such as Fourier-transform-infrared spectroscopy. A practical, broadband, low-noise mid-infrared frequency comb with moderate power and engineered spectrum may improve the frequency precision, sensitivity, and data acquisition rates of mid-infrared spectroscopy.

"Our user-controlled and engineered multiband spectra are ideal for applications in which parallel multicomb operation is desired — such as point sensors for real-time in situ chemical synthesis monitoring, near-field microscopy, and remote sensing," Nader said. "These sensors can significantly increase the detection sensitivity of tools and techniques such as breath analyzers, cancer detection, explosives tracking and detection, and drug synthesis monitoring."

The next step is to push the optical bandwidth of NIST's frequency combs to longer infrared wavelengths and higher optical powers. "We're also working to reduce their footprint and power consumption to create compact systems with improved efficiency," Nader said.

###

The article, "Versatile silicon waveguide supercontinuum for coherent mid-infrared spectroscopy," is authored by Nima Nader, Daniel L. Maser, Flavio Caldas da Crus, Abijith Kowligy, Henry Timmers, Jeffrey Chiles, Connor Fredrick, Daron A. Westly, Saw Woo Nam, Richard P. Mirin, Jeffrey M. Shainline, and Scott Diddams. The article appeared in the journal APL Photonics March 6, 2018 (DOI: 10.1063/1.5006914) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5006914.

ABOUT THE JOURNAL

APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See http://scitation.aip.org/content/aip/journal/app.

Media Contact

Julia Majors
[email protected]
301-209-3090
@AIPPhysicsNews

http://www.aip.org

Related Journal Article

http://dx.doi.org/10.1063/1.5006914

Share14Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

August 22, 2025
blank

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

August 22, 2025

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

August 22, 2025

Simon Family Supports Stevens INI in Advancing Global Alzheimer’s Research

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Over or Under? Navigating the Twists and Turns of Genetic Research

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.