• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Freiburg biologists explain function of Pentagone

Bioengineer by Bioengineer
February 11, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

How do the cells in a human embryo know where they are located in the body and how they should develop? Why do certain cells form a finger while others do not? Freiburg biologists have explained the mechanisms that control these steps by showing why veins form at particular points in the wing of a fruit fly. The protein Pentagone spreads a particular signal in the wing that tells the cells how to behave. "The proteins Dpp and Pentagone, which are crucial for this developmental step in the organism Drosophila melanogaster, are also present in a similar form in humans," says the Freiburg biologist Dr. Giorgos Pyrowolakis. "The fundamental principles elucidated in this study are also active in humans, where they might control things like where cells form fingers." Pyrowolakis and a team including Jennifer Gawlik, Dr. Mark Norman, Alexander Springhorn, and Robin Vuilleumier published their findings in the journal eLife. In the future, the results could contribute to our understanding of the origin of developmental disorders.

The protein Dpp is located in a cellular field in various concentrations. The cells located in the middle of the future wing produce Dpp. The protein spreads to the rest of the cells in the tissue, becoming less concentrated in the process. In mathematical terms, this phenomenon is referred to as a concentration gradient. A cell activates different genes depending on where it is located in the gradient. Each cell develops as specified by the genes activated in it, and veins develop when certain thresholds have been reached. Hence, the gradient determines the distance between the veins of the fruit fly wing.

The cells located furthest from the Dpp source produce Pentagone. Without this protein, there would be no concentration gradient in the cell network and Dpp would stuck at the point of its production. If the gene for Pentagone is switched off in fruit flies, the wings of the insects are smaller and the external vein is missing. "Pentagone causes Dpp to keep spreading," explains Pyrowolakis, "thus extending the distribution-range of the protein."

The Freiburg biologists elucidated the molecular mechanisms behind these processes in their study. Dpp binds to receptors located on the surface of the cell in the future wing and initiates a signal cascade in the cell. The signal cascade activates different genes depending on how many receptors are bound by Dpp. Pentagone binds to a particular part of the receptors, the so-called co-receptors. They function like tentacles, "grabbing" proteins and passing them on to the receptor. Pentagone causes the co-receptors to be pushed into the cell to be broken down. This reduces the amount of co-receptors that can bind and pass on Dpp on the cell, causing the receptors to be less active. The concentration gradient of Pentagone is opposite than that of Dpp. The closer a cell is located to the point where Pentagone is produced, the less Dpp it can bind. The amount of Pentagone is adjusted to match that of Dpp. "When the wing grows, the Dpp gradient also expands," says Pyrowolakis. "Pentagone regulates the gradient in a similar way a thermostat adjusts the temperature."

###

Giorgos Pyrowolakis is a research group leader at the Institute of Biology I, Department of Developmental Biology, of the University of Freiburg, a member of the Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies, and a principal investigator at the Spemann Graduate School of Biology and Medicine (SGBM). Jennifer Gawlik is a member of his research group and a member of the SGBM. Robin Vuilleumier and Alexander Springhorn are former members of Pyrowolakis's research group. Springhorn was also a member of the SGBM. The primary author of this study, Mark Norman, was a postdoctoral researcher in the group. His project was funded by BIOSS.

Original publication:

Mark Norman, Robin Vuilleumier, Alexander Springhorn, Jennifer Gawlik, Giorgos Pyrowolakis (2016). Pentagone internalises glypicans to fine-tune multiple signalling pathways. eLife. DOI: 10.7554/eLife.13301

Contact:

Dr. Giorgos Pyrowolakis
BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: +49 (0)761/203-8459
E-Mail: [email protected]

Media Contact

Katrin Albaum
[email protected]
49-761-203-97662
@BIOSSFreiburg

http://www.bioss.uni-freiburg.de

Share13Tweet7Share2ShareShareShare1

Related Posts

Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

October 2, 2025
Initiative Aims to Halt Decline of Iconic Butterfly Species

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    66 shares
    Share 26 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Maps Indicate India May Face the Greatest Impact from Chikungunya

Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

Experts Advocate for a Ban on Commercial Sunbeds in the UK

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.