• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Freeform imaging systems: Fermat’s principle unlocks ‘first time right’ design

Bioengineer by Bioengineer
May 13, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Fabian Duerr and Hugo Thienpont

Optical imaging systems have been playing an essential role in scientific discovery and societal progress for several centuries. For more than 150 years scientists and engineers have used aberration theory to describe and quantify the deviation of light rays from ideal focusing in an imaging system. Until recently most of these imaging systems included spherical and aspherical refractive lenses or reflective mirrors or a combination of both. With the introduction of new ultra-precision manufacturing methods, it has become possible to fabricate lenses and mirrors that lack the common translational or rotational symmetry about a plane or an axis. Such optical components are called freeform optical elements and they can be used to greatly extend the functionalities, improve performance, and reduce volume and weight of optical imaging systems. Today, the design of optical systems largely relies on efficient raytracing and optimization algorithms. A successful and widely used optimization-based optical design strategy therefore consists of choosing a well-known optical system as a starting point and steadily achieving incremental improvements. Such a “step-and-repeat” approach to optical design, however, requires considerable experience, intuition, and guesswork, which is why it is sometimes referred to as “art and science”. This applies especially to freeform optical systems.

In a newly published paper in Light Science & Applications – Nature, researchers at Brussels Photonics (B-PHOT), Vrije Universiteit Brussel, Belgium have developed a deterministic direct optical design method for freeform imaging systems based on differential equations derived from Fermat’s principle and solved using power series. The method allows calculating the optical surface coefficients that ensure minimal image blurring for each individual order of aberrations. They demonstrate the systematic, deterministic, scalable, and holistic character of their method for mirror- and lens-based design examples. The reported approach provides a disruptive methodology to design optical imaging systems from scratch, while largely reducing the ‘trial and error’ approach in present-day optical design.

The scientists summarize the operational principle of their method:

“We only need to specify the layout, the number and types of surfaces to be designed and the location of the stop. The established differential equations and solution scheme requires only two further steps: (1) solve the non-linear first order case using a standard non-linear solver; (2) solve the linear systems of equations in ascending order by setting unwanted aberrations to zero or by minimizing a combination thereof as required by the targeted specifications of the imaging freeform system. Most importantly, these two steps are identical for all (freeform) optical designs”

“The presented method allows a highly systematic generation and evaluation of directly calculated freeform design solutions that can be readily used as an excellent starting point for further and final optimization. As such, it allows the straightforward generation of ‘first time right’ initial designs that enable a rigorous, extensive and real-time evaluation in solution space when combined with available local or global optimization algorithms.”

###

Media Contact
Fabian Duerr
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00538-1

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Researchers Discover Novel Energy Potential in Iron-Based Materials

October 31, 2025

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

October 30, 2025

Truly strange and thrilling: Quantum oscillations ripple through this science magazine headline

October 30, 2025

Mapping Proteome-wide Selectivity of Diverse Electrophiles

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addressing Urban Healthcare Overcrowding: Stakeholder Insights

Tillage and Stover Impact Root Microbiomes

Novel Iron Foam Bimetallic Enhances Supercapacitor Anodes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.