• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fragile balance in the gut

Bioengineer by Bioengineer
June 21, 2022
in Biology
Reading Time: 3 mins read
0
Fragile balance in the gut
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The presence of probiotics such as lactic acid bacteria changes the environment in the intestine and forces the yeast fungus Candida albicans to change its metabolism, making it less infectious. This way, probiotics can contain or prevent the spread of fungal infections in the gut. Researchers at the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI) in Jena, Germany, have also found that intestinal cells actively promote bacterial growth to protect themselves from the fungus. The findings were published in Nature Communications.

Fragile balance in the gut

Credit: Raquel Alonso-Roman / Leibniz-HKI

The presence of probiotics such as lactic acid bacteria changes the environment in the intestine and forces the yeast fungus Candida albicans to change its metabolism, making it less infectious. This way, probiotics can contain or prevent the spread of fungal infections in the gut. Researchers at the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI) in Jena, Germany, have also found that intestinal cells actively promote bacterial growth to protect themselves from the fungus. The findings were published in Nature Communications.

The yeast Candida albicans naturally colonizes the human body, especially common in the intestine. Usually this is a benign colonization, as the immune system and a healthy gut microbiome keep it in check. However, if the microbiome gets out of balance or the immune system is severely compromised, C. albicans can enter the bloodstream. This can be life-threatening especially for immunocompromised people in intensive care units.

Researchers at Leibniz-HKI have now found that human intestinal cells play an important role in fighting fungal infections caused by C. albicans. “The intestinal cells nourish lactic acid bacteria, which thereby multiply and in turn take nutrients away from the yeast fungus,” explains first author Raquel Alonso-Roman. The new conditions force C. albicans to adapt its metabolism, causing it to shed certain characteristics and  making it less infectious. Adding the probiotics to the gut creates a balance between yeast, lactic acid bacteria and the rest of the microbiome, which restores a healthy state.

Infections with C. albicans, such as vulvovaginal infections, are already successfully treated with lactic acid bacteria. “We already know that lactic acid bacteria in particular can counteract a fungal infection, prevent it or even kill the fungus. Our work now addresses the question of ‘how’,” explains Bernhard Hube, head of the Department of Microbial Pathogenicity Mechanisms.

In collaboration with systems biologists at the institute, the researchers developed computer models that can predict how lactic acid bacteria of the species Lactobacillus rhamnosus behave when encountering C. albicans. “Using data from previous studies, our computer models can predict that the lactic acid bacteria would multiply and eventually counteract C. albicans,” explains Mark Gresnigt, junior group leader at Leibniz-HKI. However, subsequent experiments in the lab showed that the bacteria did not multiply in conventional culture media as predicted. “Only when we added epithelial cells from the gut did the lactic acid bacteria begin to multiply,” Gresnigt continued. Together with the junior research group of Slavena Vylkova, also at Leibniz-HKI, the researchers were able to find out how the yeast fungus changes its metabolism to adapt to the new conditions. Since there are no longer enough nutrients in the intestine, there is an adjustment in the gene activity of C. albicans, which makes the yeast fungus less infectious and thus no longer able to damage the intestinal cells.

The results of this research form an important step forward in the fight against life-threatening fungal infections. “We want to find out how probiotics fight infection. With this knowledge, we may be able to develop measures to prevent the aggressive behavior of the fungus. The idea is to influence the fungus the way probiotics would, without actually using them,” Hube explains. Especially in immunosuppressed patients, he said, it is usually too dangerous to use live bacteria as a remedy.

The balance and dysbalance of microorganisms in humans, animals and the environment are the central research focus of the Balance of the Microverse Cluster of Excellence and the Collaborative Research Center FungiNet, which supported this work.



Journal

Nature Communications

DOI

10.1038/s41467-022-30661-5

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity.

Article Publication Date

9-Jun-2022

COI Statement

The authors declare no competing interests.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Scientists Discover New Switch That Triggers Programmed Cell Death

November 3, 2025
blank

Agricultural Practices: A Key Factor in the Preservation or Degradation of Protected Areas

November 3, 2025

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perpendicular-Anisotropy Spin Ice Enables Tunable Reservoir Computing

Nutrient Sources’ Influence on Gladiolus Growth and Soil Microbes

Vitamin D’s Impact on Autism: A Clinical Trial

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.