• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Forever chemical pollution can now be tracked

by
August 7, 2024
in Science News
Reading Time: 3 mins read
0
Scientist in lab
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Organofluorine compounds — sometimes called ‘forever chemicals’ — are increasingly turning up in our drinking water, oceans and even human blood, posing a potential threat to the environment and human health.

Scientist in lab

Credit: Jackson School of Geosciences/University of Texas Institute for Geophysics

Organofluorine compounds — sometimes called ‘forever chemicals’ — are increasingly turning up in our drinking water, oceans and even human blood, posing a potential threat to the environment and human health.

Now, researchers at The University of Texas at Austin have developed a way to fingerprint them, which could help authorities trace them to their source when they end up in aquifers, waterways or soil.

The technique involves passing samples through a strong magnetic field then reading the burst of radio waves their atoms emit. This reveals the composition of carbon isotopes in the molecule and gives the chemical its fingerprint, a feat that had not previously been achieved with forever chemicals.

The work is important because it allows scientists to track the spread of forever chemicals in the environment, said Cornelia Rasmussen, a research assistant professor at the University of Texas Institute for Geophysics at the Jackson School of Geosciences.

“Ultimately we will be able to trace molecules and see how they move,” said Rasmussen, who co-led development of the technique. “For example, whether they just stay where they got dumped or whether they’re moving downstream.”

The new technique was described in a paper published in the journal Environmental Science & Technology.

The super strong molecular bonds that give forever chemicals their handy characteristics — which are put to use in everything from fire retardants to non-stick surfaces and slow-release drugs — also keep them from breaking down in the environment, causing them to build up as pollution in soil and organic material to which they easily stick

The U.S. Environmental Protection Agency plans to regulate forever chemicals, which include PFAS, and eliminate most of them from drinking water. However, the molecular bonds of the chemicals also make them difficult to trace. That’s because conventional chemical fingerprinting involves breaking molecules apart in a mass spectrometer which doesn’t work well with the tough molecular bonds of forever chemicals.

Instead, the researchers turned to a technology called nuclear magnetic resonance (NMR) spectroscopy, which measures a molecule’s structure and identifies its isotopes without breaking it apart.

Isotopes refer to chemical elements with differences in the number of neutrons in its atoms. Forever chemicals are made by bonding carbon isotopes to the element fluorine, which almost never happens in nature. Once the molecular bonds form, they are virtually unbreakable.

The researchers’ technique uses the NMR instrument alongside their own computational tools to determine the mix of carbon isotopes at each position in the molecule. Because the mix of carbon isotopes bonding to each fluorine atom is unique to how the chemical was manufactured, this information can be used like a fingerprint to trace a chemical.

It’s like a built-in barcode for molecules, said coauthor, David Hoffman, an associate professor at the Department of Molecular Biosciences in UT’s College of Natural Sciences.

“Part of the reason this has worked out so well is because we’re assembling tools from different areas of science [chemistry and geosciences] that don’t normally mix and using them to do something no one’s really done before,” he said.

The researchers tested their technique on samples that included pharmaceuticals and a common pesticide. Rasmussen and Hoffman are now conducting a pilot study to see how the technique will fare on pollutants that show up in the city of Austin’s creeks and wastewater. If successful, the technique could be useful for state and federal agencies who want to track the spread of water-borne forever chemicals.

Rasmussen said that the work has opened up a new layer of isotope information in organic chemistry that could find many applications beyond tracking forever chemicals, such as detecting counterfeit drugs or astrobiology. Her ultimate goal, however, is to take the technique even further afield.

“It’s given us a whole range of possibilities to learn really interesting things about metabolism on early Earth,” she said. “It could even tell us whether organics on Mars are the last remnants of some ancient Martian life.”

The research was funded by the U.S. Department of Energy’s Basic Energy Sciences program.



Journal

Environmental Science & Technology

DOI

10.1021/acs.est.4c02250

Article Title

Fingerprinting Organofluorine Molecules via Position-Specific Isotope Analysis

Article Publication Date

18-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Asthma Treatments: Fluticasone vs. Beclometasone

November 2, 2025

School Nurses’ Impact on Pediatric Obesity in Saudi Arabia

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling SLAMF8’s Role in Prostate Cancer Metastasis

November 2, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Asthma Treatments: Fluticasone vs. Beclometasone

School Nurses’ Impact on Pediatric Obesity in Saudi Arabia

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.