• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Forests recovering from logging act as a source of carbon

Bioengineer by Bioengineer
January 9, 2023
in Chemistry
Reading Time: 3 mins read
0
Logging
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tropical forests recovering from logging are sources of carbon for years afterwards, contrary to previous assumptions, finds a new study.

Logging

Credit: Zoe G Davies

Tropical forests recovering from logging are sources of carbon for years afterwards, contrary to previous assumptions, finds a new study.

Tropical forests that are recovering from having trees removed were thought to be carbon absorbers, as the new trees grow quickly. A new study, led by Imperial College London researchers, turns this on its head, showing that the carbon released by soil and rotting wood outpaces the carbon absorbed by new growth.

The researchers say the result highlights the need for logging practices that minimise collateral damage to improve the sustainability of the industry. The study, which monitored carbon in forests in Malaysian Borneo as part of the Stability of Altered Forest Ecosystem (SAFE) Project, is published today in Proceedings of the National Academy of Sciences.

First author Maria Mills, who began the work at Imperial and completed it at the University of Leicester, said: “Our results show that for the tropical forest we studied, logged areas are a source of carbon even a decade after logging has occurred. This means we need to reassess their role in global carbon budgets – we can no longer apply the blanket assumption that they are carbon sinks.”

Lead researcher Dr Terhi Riutta, now at the University of Exeter, said: “A lot of the carbon released in recovering forests is from collateral damage – trees that have died as a result of damage during the logging operations left to rot, and from disturbed soil. Logged forests still have value – we know they have a unique biodiversity – so making sure they are also not releasing extra carbon through better logging practices will boost their sustainability.”

Many previous studies of recovering forests have focused on measuring tree growth to estimate the amount of carbon taken from the atmosphere. The new study also measured how much carbon was coming from the ground (soil and dead wood) to calculate the carbon budget from the incoming and outgoing carbon flows for logged and unlogged (old-growth) forest.

Logged forest plots in the study had experienced logging at different stages over the prior few decades. The measurements were taken between 2011 and 2017.

To measure the carbon released from the ground, researchers used a portable carbon dioxide monitor to test patches of ground and pieces of deadwood in several plots monthly for several years. The team had also set up a 52-metre-tall tower above the forest canopy to continuously measure the ‘flux’ of carbon into and out of the forest to see whether it was a net source or sink of carbon.

They found that unlogged forested areas are generally carbon neutral, but that moderately and heavily logged tropical forest areas are a carbon source. They estimate an average carbon source of 1.75 +/- 0.94 tonnes of carbon per hectare within moderately logged plots and 5.23 +/- 1.23 tonnes of carbon per hectare in severely degraded plots, with emissions continuing at these rates for at least one decade after logging.

Co-author Professor Rob Ewers, from the Department of Life Sciences at Imperial, said: “The measurements from the tower show us whether the forest area is a source or a sink of carbon, and the soil monitoring tells us why this is. From these measurements, we know logged forests are still a source of carbon up to a decade after they have been logged, and that this primarily comes from organic matter in the soil or from rotting wood.”

The team say carbon monitoring should be conducted in other forests in different regions to build a more accurate picture of how logged forests contribute to global carbon budgets.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2214462120

Article Title

Tropical forests post-logging are a persistent net carbon source to the atmosphere

Article Publication Date

9-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

October 23, 2025
Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

October 22, 2025

Underwater Thermal Vents Could Be the Cradle of Life’s Earliest Molecular Precursors

October 22, 2025

New Bacterium Harnesses Spent Battery Waste, Paving the Way for Self-Sufficient Battery Recycling

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    146 shares
    Share 58 Tweet 37
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Auxin Production in Streptomyces for Plant Growth

Apple Size Grading Using LabVIEW and YOLO

Designing Ca2+ Channels from Filter Geometry

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.