• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Forensics puzzle cracked via fluid mechanical principles

Bioengineer by Bioengineer
April 20, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How can clothing of a close-range shooter remain free of bloodstains?

IMAGE

Credit: Gen Li, Nathaniel Sliefert, James B. Michael, and Alexander L. Yarin

WASHINGTON, April 20, 2021 — In 2009, music producer Phil Spector was convicted for the 2003 murder of actress Lana Clarkson, who was shot in the face from a very short distance. He was dressed in white clothes, but no bloodstains were found on his clothing — even though significant backward blood spatter occurred.

How could his clothing remain clean if he was the shooter? This real-life forensic puzzle inspired University of Illinois at Chicago and Iowa State University researchers to explore the fluid physics involved.

In Physics of Fluids, from AIP Publishing, the researchers present theoretical results revealing an interaction of the incoming vortex ring of propellant muzzle gases with backward blood spatter.

A detailed analytical theory of such turbulent self-similar vortex rings was given by this group in earlier work and is linked mathematically to the theory of quantum oscillators.

“In our previous work, we determined the physical mechanism of backward spatter as an inevitable instability triggered by acceleration of a denser fluid, blood, toward a lighter fluid, air,” said Alexander Yarin, a distinguished professor at the University of Illinois at Chicago. “This is the so-called Rayleigh-Taylor instability, which is responsible for water dripping from a ceiling.”

Backward spatter droplets fly from the victim toward the shooter after being splashed by a penetrating bullet. So the researchers zeroed in on how these blood droplets interact with a turbulent vortex ring of muzzle gases moving from the shooter toward the victim.

They predict that backward blood spatter droplets can be entrained — incorporated and swept along within its flow — by the approaching turbulent vortex ring, even being turned around.

“This means that such droplets can even land behind the victim, along with the forward splatter being caused by a penetrated bullet,” said Yarin. “With a certain position of the shooter relative to the victim, it is possible for the shooter’s clothing to remain practically free of bloodstains.”

The physical understanding reached in this work will be helpful in forensic analysis of cases such as that of Clarkson’s murder.

“Presumably, many forensic puzzles of this type can be solved based on sound fluid mechanical principles,” said Yarin.

###

The article “Blood backspatter interaction with propellant gases” is authored by Gen Li, Nathaniel Sliefert, James B. Michael, and Alexander L. Yarin. It will appear in Physics of Fluids on April 20, 2021 (DOI: 10.1063/5.0045214). After that date, it can be accessed at: https://aip.scitation.org/doi/10.1063/5.0045214.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0045214

Tags: Chemistry/Physics/Materials SciencesLaw EnforcementScience/Health/Law
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    134 shares
    Share 54 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Suicide Trends and Triggers in Youth

Pollinator Patterns and Phenology in Hohenbergia Species

Unveiling Archaeoniscus brodiei: Early Cretaceous Isopod Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.