• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Foraging for nitrogen

Bioengineer by Bioengineer
June 7, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How brassinosteroid signaling makes roots grow longer under nitrogen deficiency

IMAGE

Credit: Dr. Ricardo Giehl/IPK

As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions. One such response, known to be displayed by plants grown in low nitrogen conditions, is the elongation of primary and lateral roots to explore the surrounding soil. This adaption to the lack of the essential element nitrogen is of particular interest, as it reflects a “foraging strategy”, by which the root system can exploit nutrients from a larger soil volume. Until recently, this was the least understood nitrogen-dependent root response. Scientists from the IPK in Gatersleben have now identified the hormone pathway regulating root foraging under low nitrogen conditions and a signalling component that modulates the intensity of this response. These findings open up the possibility of breeding crops with root systems enabling more efficient nitrogen uptake.

The amount and form of plant-available nutrients fluctuates in soils, for example in dependence of soil moisture or microbial transformation processes of nutrients. Plants sense changes in their nutritional status and respond to these by tailoring the growth and development of their roots. These responses express in an altered degree of branching, extension, placement, and growth direction of individual parts of the root system. Nitrogen is an essential mineral element and nutrient for plants. When nitrogen availability is low, plant roots preferentially grow into nitrogen-enriched soil patches by locally expanding their lateral roots. As soon as plants run into nitrogen deficiency, they immediately induce a foraging response, in which roots elongate to explore a larger soil volume. The regulatory mechanisms underlying this nitrogen-dependent root response were previously unknown. Researchers from the IPK in Gatersleben have now discovered that a class of steroid hormones modulate root foraging under low nitrogen conditions and thereby determine the extent of this response. The findings were published in Nature Communications.

In this study, scientists from the research group “Molecular Plant Nutrition”, led by Prof. N. von Wirén, assessed the natural variation in root growth under mild nitrogen deficiency in 200 accessions of the model plant Arabidopsis thaliana. Employing genome-wide association mapping with support of the “Heterosis” group led by Prof. T. Altmann, the researchers were able to show that BSK3, a brassinosteroid signaling kinase, is modulating the extent of root elongation under low nitrogen. Further, they demonstrated that mild nitrogen deficiency activates brassinosteroid signaling by upregulating the transcript levels of the brassinosteroid co-receptor BAK1 that enhances the sensitivity of root cells to brassinosteroids.

The results reveal a previously unknown role of brassinosteroid-type plant hormones in shaping root systems in response to nutrient deficiencies. This novel insight allows a deeper understanding of the regulation behind adaptive responses of plants to changes in nitrogen availability, but also provides a perspective for practical application in agriculture.

As a “major driver of plant growth”, nitrogen is an indispensable element in agricultural plant production. However, nitrogen fertilizers must be used with care, as a surplus of nitrogen in the soil can have a detrimental impact on the environment, for example by leading to soil acidification or to eutrophication of waterbodies. Therefore, the breeding of crops, which better exploit the soil for nutrients, is highly desirable as they may require less fertilizer. The researchers of this study see their discovery of the regulatory role of BSK3 as novel opportunity to approach this matter. By exploiting naturally occurring allelic versions of BSK3 or by the generation of de-novo variants by precise genome editing, plant breeders could develop new crop cultivars with larger root systems, giving crop species the sought-after mechanisms to perform better at low nitrogen fertilizer inputs.

###

Media Contact
Dr. Nicolaus von Wirén
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10331-9

Tags: AgricultureBiochemistryBiologyCell BiologyGenesMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Why AI Models for Drug Design Struggle with Physics

October 29, 2025
blank

Pioneering the Era of Supramolecular Robotics: Molecules in Motion

October 29, 2025

Discovering New Insights into How Physical Forces Travel Through Neurons

October 29, 2025

Impact of Hurricane Helene on Groundwater Chemistry: A Scientific Analysis

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeted Vector Enables Brain Endothelial Gene Delivery

Reproducibility of Deep Learning in Cardiac MRI

dmrt2a’s Role in Oocyte Development Discovered

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.