• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Football players’ concussions linked to dyslexia gene

Bioengineer by Bioengineer
October 23, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
  • Gene predicts concussion history in a collegiate national champion football team
  • Gene has been linked to dyslexia in other studies
  • Hypothesis: wiring of dyslexic brain may help protect it from impact injuries

CHICAGO — A gene associated with dyslexia, a learning disorder, may make some athletes less susceptible to concussions, reports a new study from Penn State University and Northwestern Medicine.

This is believed to be the first time that this gene has been implicated in concussion or mild traumatic brain injury in athletes of a high-impact sport.

"This suggests that genotype may play a role in your susceptibility for getting a concussion," said co-corresponding author Dr. Hans Breiter, a professor of psychiatry and behavioral sciences at Northwestern University Feinberg School of Medicine and director of the Northwestern Medicine Warren Wright Adolescent Center. "If replicated, this information may be important to parents."

The paper was published Oct. 23 in the Journal of Neurotrauma.

"This finding raises the question: are their particular factors we can determine that put players at higher risk, and should those players be placed in sports that don't have the potential for head trauma?" said co-first author Amy Herrold, a research assistant professor of psychiatry and behavioral sciences at Feinberg.

There are three variants of every gene. Athletes with one variant of the gene that did not confer dyslexia were more likely to have a history of concussion injuries. Athletes with the version of the gene that causes dyslexia were less likely to have concussion injuries.

The reason for the lower risk may relate to the more diffuse way the dyslexic brain is wired, said co-corresponding author Sam Semyon Slobounov, professor of kinesiology and of neurosurgery at Hershey Medical School of Penn State University and director of the Virtual Reality/Traumatic Brain Injury Research Laboratory. "Dyslexia may be neuroprotective, a hypothesis that could be tested," he said.

"In dyslexia, you tend to have less defined wiring for processing spoken and written language," Breiter said. "Dyslexics have a problem with that. Their wiring is more diffuse in this system. Future studies could directly test if diffuse wiring is better able to absorb a shock wave than clearly defined wiring."

The study included 87 varsity Penn State football players from 2015 to 2017. The players reported their concussion history, which the team physician confirmed through each player's medical evaluation and medical records of observable concussion signs as opposed to player reports of symptoms. Each player had a swab of his inner cheek taken, which was genetically analyzed.

The gene, KIAA0319, has not been looked at in concussion research before. Scientists decided to study it, along with a number of other candidate genes, because of its role in cell adhesion and neuron migration, said Alexa Walter, co-first author of the paper and a graduate student in kinesiology at Penn State. The gene KIAA0319 could have an effect on how neurons respond to head impacts or are repaired after an injury.

"This is one piece of the puzzle," Herrold said. The study is part of a larger project in the Concussion Neuroimaging Consortium, which studies the neuroscience of head impacts in athletes.

The genotype predicted the number of previously diagnosed concussions in the players. Everyone has the KIAA0319 gene in one of three combinations. In this gene, the genotypes are CC, CT or TT. There was a direct increase in diagnosed concussions as one went from CC to CT to TT individuals. The CC genotype has been associated with dyslexia in other studies.

###

Other authors on the paper are Virginia T. Gallagher, Rosa Lee, Madeleine Scaramuzzo, Tim Bream, Peter H. Seidenberg, David Vandenbergh, Kailyn O'Connor, Thomas M. Talavage and Eric A. Nauma.

The research was funded by Semyon Slobounov's lab and Hans Breiter's lab.

More news at Northwestern Now
Find experts on our Faculty Experts Hub
Follow @NUSources for expert perspectives

Media Contact

Marla Paul
[email protected]
@northwesternu

http://www.northwestern.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Brain & Behavior Research Foundation Honors Five Top Psychiatric Researchers with 2025 Outstanding Achievement Prizes

October 9, 2025

Urological Models Verified with Human Penile Tissue Tests

October 9, 2025

Emergency Nurses’ Presenteeism: A Qualitative Insight

October 9, 2025

Enhancing Care Quality with WHO SMART Guidelines

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1173 shares
    Share 468 Tweet 293
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain & Behavior Research Foundation Honors Five Top Psychiatric Researchers with 2025 Outstanding Achievement Prizes

Urological Models Verified with Human Penile Tissue Tests

Emergency Nurses’ Presenteeism: A Qualitative Insight

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.