• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Food packaging could be negatively affecting nutrient absorption in your body

Bioengineer by Bioengineer
April 9, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Binghamton University, State University at New York

BINGHAMTON, N.Y. – Food packaging could be negatively affecting the way in which your digestive tract operates, according to new research by faculty and students at Binghamton University, State University at New York.

"We found that zinc oxide (ZnO) nanoparticles at doses that are relevant to what you might normally eat in a meal or a day can change the way that your intestine absorbs nutrients or your intestinal cell gene and protein expression," said Gretchen Mahler, associate professor of bioengineering.

According to Mahler, these ZnO nanoparticles are present in the lining of certain canned goods for their antimicrobial properties and to prevent staining of sulfur-producing foods. In the study, canned corn, tuna, asparagus and chicken were studied using mass spectrometry to estimate how many particles might be transferred to the food. It was found that the food contained 100 times the daily dietary allowance of zinc. Mahler then looked at the effect the particles had on the digestive tract.

"People have looked at the effects of nanoparticles on intestinal cells before, but they tend to work with really high doses and look for obvious toxicity, like cell death," said Mahler. "We are looking at cell function, which is a much more subtle effect, and looking at nanoparticle doses that are closer to what you might really be exposed to."

"They tend to settle onto the cells representing the gastrointestinal tract and cause remodeling or loss of the microvilli, which are tiny projections on the surface of the intestinal absorptive cells that help to increase the surface area available for absorption," said Mahler. "This loss of surface area tends to result in a decrease in nutrient absorption. Some of the nanoparticles also cause pro-inflammatory signaling at high doses, and this can increase the permeability of the intestinal model. An increase in intestinal permeability is not a good thing — it means that compounds that are not supposed to pass through into the bloodstream might be able to."

Although Mahler studied these effects in the lab, she said she is unsure what the long-term health implications might be.

"It is difficult to say what the long-term effects of nanoparticle ingestion are on human health, especially based on results from a cell culture model," said Mahler. "What I can say is that our model shows that the nanoparticles do have effects on our in vitro model, and that understanding how they affect gut function is an important area of study for consumer safety."

The researchers are looking at how an animal model (chickens) responds to nanoparticle ingestion.

"We have seen that our cell culture results are similar to results found in animals and that the gut microbial populations are affected. Future work will focus on these food additive-gut microbiome interactions," said Mahler.

###

This is the first research that analyzes how ZnO nanoparticles affect the human body. The study was done by Mahler, Fabiola Morena-Olivas, a graduate student studying biomedical engineering, and their collaborator Elad Tako from the Plant, Soil and Nutrition Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Ithaca, N.Y. The research is funded by the National Institute of Environmental Health Sciences.

The study, "ZnO nanoparticles affect intestinal function in an in vitro model," was published in the journal Food and Function.

Media Contact

Gretchen Mahler
[email protected]
607-777-5238
@binghamtonu

http://www.binghamton.edu

Related Journal Article

http://dx.doi.org/10.1039/C7FO02038D

Share12Tweet7Share2ShareShareShare1

Related Posts

Refining Variant Analysis in Primate Genomes

Refining Variant Analysis in Primate Genomes

August 25, 2025
The Active Role of Repetitive DNA in the Human Brain Uncovered

The Active Role of Repetitive DNA in the Human Brain Uncovered

August 25, 2025

Durable and Efficient H2 Evolution Achieved with Strongly Coupled Pt–N-Mo Cluster Heterostructure in Anion-Exchange Membrane Electrolyzers

August 25, 2025

Sugars Signal Guard Cell Ion Transport in Red Light

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    143 shares
    Share 57 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Essential Oils Combat Porphyromonas gingivalis: A Study

Exploring Iran’s Migrant Health Policy Framework

Enhancing STING Agonist Therapy through Bioengineering Techniques

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.