• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Following the inner compass: How birds find their ways to foreign lands

Bioengineer by Bioengineer
February 22, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How migratory animals find their way to the wintering grounds, thousands of kilometers apart from their breeding ground, is a fascinating riddle of nature. Previous studies have suggested they possibly follow the geomagnetic field lines and olfactory cues to determine the direction. However, the physiological mechanisms behind this magnetic orientation remain unknown. Now, neuroscientists and ecologists from Doshisha University and Nagoya University, Japan, conducted a study to understand how birds know which direction to follow during long-distance flight. The study has been published on Feb 4, 2022, in the latest issue of the journal Science Advances.

Diagram showing the head direction cells of a Streaked Shearwater chick preferring the north like an internal compass.

Credit: Image credit: Susumu Takahashi from Doshisha University

How migratory animals find their way to the wintering grounds, thousands of kilometers apart from their breeding ground, is a fascinating riddle of nature. Previous studies have suggested they possibly follow the geomagnetic field lines and olfactory cues to determine the direction. However, the physiological mechanisms behind this magnetic orientation remain unknown. Now, neuroscientists and ecologists from Doshisha University and Nagoya University, Japan, conducted a study to understand how birds know which direction to follow during long-distance flight. The study has been published on Feb 4, 2022, in the latest issue of the journal Science Advances.

To date, studies show that migratory birds navigate through new terrains or over oceans sans any landmarks by perceiving the geomagnetic fields of the earth. They do this with the help of the magnetically sensitive proteins in their eyes and the magneto-receptive cells in the vestibular nucleus in their brain. The vestibular nucleus is also known to contribute to the activity of the head direction (HD) cells involved in this directional sensing. This link prompted Professor Susumu Takahashi of Doshisha University, the lead and corresponding author of the study, and his colleagues (including Professor Ken Yoda from Nagoya University) to hypothesize that the directional and the magnetoreception senses may share a few common neural players.

The team decided to explore how the brain combines the magnetoreception and direction senses by studying the activity of HD cells of the streaked shearwater- a species of seabirds that breed on islands in Japan, Korea, and China and eventually migrate to wintering grounds located in the Philippines, Indonesia, and northern Australia. 

“Interestingly, during their first migratory flight, juvenile birds do not follow the easier detours along the coastline taken by their parents. Instead, they fly directly towards the destination through difficult mountain ranges. This suggests that the juvenile birds rely heavily on the orientation of their in-built compass, rather than the environmental cues followed by the adult ones,” Prof. Takahashi shares.

To do this, they took the help of a lightweight device called a “neurologger”, that can wirelessly record the electrophysiological activity of the brain of freely behaving wild animals. First, they captured five male and five female streaked shearwater chicks from their burrows and housed them in the light-shielding cages. Then, they used the neurologger to record the electrophysiological activity from the medial pallium region of the brain. Next, they let the baby birds walk freely and repeatedly in two environments—in a room and on a sea-facing cliff—2.5 km and 1 km far from their burrows, respectively. While the ceiling lights, desks, and chairs in the room served as visual cues, the sun’s direction was not perceivable to the birds. 

The researchers found that around 20% of the cells in the medial pallium region fired electrical pulses with higher frequency when the birds faced towards a specific orientation. The preferred orientation was distributed unevenly in the northern direction. But, when the birds faced orientations other than the north, the cells remained less active. This preference for the north was observed even when the experimental location was moved more than a few kilometers, suggesting the location-independent geomagnetic field was used as a cue for head orientation. 

The study underscores the role of the HD cells as internal compasses that preferentially represent north orientation at the onset of the first long flight of the migratory birds. Also, the HD cells aid in the integration of the direction and magnetoreception senses. Professor Takahashi is hopeful that the newly gained insights into the neuronal role in navigation mechanisms of migratory birds would open newer avenues in ecological conservation research. 

“Our findings suggest that the avian internal compass can be utilized to gain insights into the neuronal underpinning of animal migration patterns. It will potentially contribute to the fulfilment of the United Nations’ Sustainable Development Goal #14: Life Below Water,” he concludes.
 



Journal

Science Advances

DOI

10.1126/sciadv.abl6848

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Head direction cells in a migratory bird prefer north

Article Publication Date

4-Feb-2022

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Ferroptosis Links to Acute Kidney Disease Genes

Ferroptosis Links to Acute Kidney Disease Genes

August 28, 2025
Red Beet Gene Boosts Tuber Growth and Disease Resistance

Red Beet Gene Boosts Tuber Growth and Disease Resistance

August 28, 2025

VHL Inhibits Angiogenesis via HIF-1a in Macrophages

August 28, 2025

Trainer Insights on Canine Aggression and Behavior Solutions

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Web Video Support for Cardiac Patients

Amygdala Noise Boosts Exploration During Threat

AI Unveils IVIG-Resistant Kawasaki Disease in Shandong

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.