• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Fluorescence dyes from the pressure cooker

Bioengineer by Bioengineer
January 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: TU Wien

Rethinking a complex chemical synthesis

The laboratory of Dr. Miriam M. Unterlass at the Institute of Materials Chemistry at TU Wien has just reported the synthesis of more than 20 different perylene bisimide dyes. This is not impressive per se. The way they prepare these compounds is though: Conventionally, perylene bisimides are generated in highly toxic solvents and employing toxic and expensive catalysts. Moreover, classical reactions towards these dyes require an important excess of the starting compounds. Finally, tedious purification is necessary for obtaining dye products of sufficient purity. All in all, the conventional route is a complex chemical synthesis. "In our approach, we are using the starting compounds in a 1:1 ratio, i.e. without an excess of reactants. The starting compounds are dispersed in water inside a closed reactor. Then the mixture is heated to 200 ?C and increased pressure is generated", explains Dr. Unterlass. "In fact, the reactor basically works like a pressure cooker." Such reactions in hot water under pressure are called hydrothermal syntheses. After the reaction has completed, the final perylene bisimide dyes are obtained with high purity, thus removing the necessity for tedious purification. For actual electronic applications, perylene bisimdes are mostly implemented by device engineers and physicists, who often do not have access to chemical laboratories. The novel hydrothermal synthesis bears the potential of enabling an easy access to these materials – an important step towards realistic application.

From big molecules to small molecules

Previously, Miriam Unterlass' team had developed a novel process for high-performance polymers, which equally takes place in hot water. The hydrothermal synthesis of perylene bisimide dyes now shows for the first time that small molecules can also be generated "in the pressure cooker". The order of developments is rather untypical. Normally, novel synthetic pathways are first developed for small molecules – which are often easier to conceive – and later transposed to polymers, i.e. "big molecules". Despite their small size, the hydrothermal synthesis was however very challenging. For perylene bisimides. They are very apolar, which means that they do not like water – at room temperature. By heating the water to increased temperatures, this challenge can however be met. The hydrothermal synthesis of perylene bisimides is highly efficient and environmentally friendly, and has just been published in the journal Chemical Communications.

###

Original publication:

B. Baumgartner, A. Svirkova, J. Bintinger, C. Hametner, M. Marchetti-Deschmann and M. M. Unterlass: Green and highly efficient synthesis of perylene and naphthalene bisimides in nothing but water. Chem. Commun. 2017, 53, 1229-1232 | DOI: 10.1039/C6CC06567H

Wep tip: Homepage of the research group of Miriam Unterlass

Picture download: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/farbstoffe/

Media Contact

Dr. Miriam M. Unterlass
[email protected]
43-158-801-165-206
@tuvienna

http://www.tuwien.ac.at/tu_vienna/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

October 5, 2025

Psychological Resilience Mediates Care in Nursing Interns

October 5, 2025

MeaB bZIP Factor Essential for Nitrosative Stress Response

October 5, 2025

Revolutionizing Preterm Infant Care in Resource-Limited Settings

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.