• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Flowing cells in a wavy microchannel for effective size-based cell sorting

Bioengineer by Bioengineer
May 15, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: SUTD

Nearly half a century ago scientists have noticed an interesting phenomenon that small particles flowing through a long tube can stay at a specific position along the cross-section of a tube. This is known as inertial focusing. Later, along with the development of microfluidic technology in recent decades, inertial focusing (one type of passive microfluidic manipulation technology) has emerged as one of the most powerful and precise cell manipulation techniques, exhibiting immense commercial potentials in the bioengineering and pharmaceutical industries. Assistant Professor Dr Ye Ai's research team from the Singapore University of Technology and Design (SUTD) recently developed a novel, credit card sized inertial cell focusing and sorting microfluidic device with a channel of 125 ÎĽm wide (roughly half of a single fingernail's thickness), providing the potential of rare cell isolation from complex clinical samples.

Currently cancer is becoming one of the leading causes of human death. One of the major difficulties towards achieving radical cure in cancer is due to malignant metastasis, which directly causes overwhelming obstacles in therapeutic management and early diagnosis. The ability to isolate rare circulating tumor cells (CTCs), the seeds for cancer metastasis, enables much less invasive approach for cancer diagnosis and prognosis. New microfluidic technologies for high throughput, high accuracy cell sorting of complex biological samples are highly sought after to address the challenge in rare cell isolation.

In this research, Dr Ai's team presented a novel inertial focusing and sorting device with a series of reverse wavy channel structures consisting of semi-circular sections that generate a periodically reversed hydrodynamic flow perpendicular to the main flow direction. The balance between two kinds of hydrodynamic forces resulted in a size-dependent lateral particle movement across the channel, which finally achieved size-based separation of target cells from non-target cells. The principal investigator, SUTD's Dr Ai said: "Compared to active methods, the passive inertial focusing with the use of hydrodynamic forces exhibit the merits of a simplified setup, high-throughput and low-energy consumption. Moreover, the linear array of these repeated wavy channel units also facilitates easy horizontal (2D) and vertical (3D) parallelization of multiple channels, which provides great potential for high-throughput cell sorting in practical biomedical applications." The team has applied the developed sorting technology for high-throughput isolation of cancer cells from whole blood samples.

###

This work has been published in Nature's Microsystems & Nanoengineering journal, which is focused on research in all aspects of Micro and Nano Systems. Two SUTD graduate students (Yinning Zhou and Zhichao Ma) participated in this research project.

Media Contact

Melissa Koh
[email protected]
65-649-98742

http://www.sutd.edu.sg

Related Journal Article

http://dx.doi.org/10.1038/s41378-018-0005-6

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.