• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

‘Flash and freeze’ reveals dynamics of nerve connections

Bioengineer by Bioengineer
January 9, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New method to simultaneously study both structure and function of synapses in intact brain circuitry of mice presented — study published in Neuron

IMAGE

Credit: Carolina Borges Merjane

Uniting structure and function of synapses is challenging: Function is studied in living tissue, measuring electrical signals at millisecond precision with electrophysiology, while the observation of fine structure at nanometer scale requires tissue to be fixed for electron microscopy. Peter Jonas, professor at the Institute of Science and Technology Austria (IST Austria), and his group members, first authors Carolina Borges-Merjane (postdoc) and Olena Kim (PhD student), have developed a so-called “flash and freeze” method for studying structure and function of synapses in intact neural circuits in mammalian brain slices.

Method makes structural changes during signaling visible

“Flash and freeze” refers to the flash of light used to stimulate the neurons, followed by immediate freezing of the tissue to fix it in its most native state. Peter Jonas sums up the challenge: “We mostly do impossible experiments in the Jonas lab, and the new research falls exactly into this category. Here, we take a synapse, stimulate it with light and, within milliseconds, shoot it into a chamber that freezes the structure at minus 196 degrees Celsius and at a pressure of 2,000 bar”. The sample is then dropped into a tank of liquid nitrogen and prepared for analysis by electron microscopy.

This set-up allows neuroscientists to stimulate neurons and freeze the tissue immediately afterwards for analysis by electron microscopy, so that changes in anatomy right after stimulation become visible. “It is a very dynamic way of studying synapses”, explains Carolina Borges-Merjane, “we can flash and then freeze immediately or wait a few milliseconds or even seconds. By taking several such snapshots, we reveal the time course of structural changes that happen during synaptic transmission.” In a parallel series of electrophysiology experiments in living tissue, the researchers characterized the functional dynamics of the same type of synapses. By integrating these data sets, they show how structural changes give rise to the observed function.

Function retained in intact networks

The method presented by the Jonas group is a modification of the “flash and freeze” protocol initially used for studying neurons of the worm Caenorhabditis elegans and individually isolated or dissociated mammalian neurons. The difference: the newly reported method uses slices of the mouse brain, in which neuronal networks remain largely intact and alive. “The function of neurons is usually studied in slices of brain tissue, in which networks remain intact. Synaptic structure is typically studied in chemically fixed samples or, as previously done with flash and freeze, with dissociated neurons. With our method, we can now use the same type of preparation used to study synaptic function to simultaneously study structure”, Olena Kim points out. The authors also demonstrated that the method is widely applicable to different brain regions and can therefore be used in studies of a variety of synapses in the brain.

Near identity of structurally and functionally defined vesicle pools demonstrated

In a proof-of-principle experiment, the researchers analyzed pools of vesicles at a cortical synapse. These vesicles contain the neurotransmitters that transfer signals to the neighboring neuron. They found that the structurally defined “docked” pool and the functionally defined “readily releasable pool” of synaptic vesicles are in fact revealed to be very nearly the same, once observed and analyzed using their new integrated method. “This has never been demonstrated directly. We interpret our results as meaning that vesicles fuse and integrate with the plasma membrane”, Jonas explains. “Our finding underlines how important it is to extend studies of both structure and function to cortical circuits.”

###

Media Contact
Kathrin Pauser
[email protected]
43-224-390-001-162

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2019.12.022

Tags: BiologyCell Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Addiction-like Eating Tied to Deprivation and BMI

September 12, 2025

Mosquito Gene Response Reveals Japanese Encephalitis Entry

September 12, 2025

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

September 11, 2025

Barriers to Video Visits for Non-English Patients

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addiction-like Eating Tied to Deprivation and BMI

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.